Skip to main content

Cropping Systems Management, Soil Microbial Communities, and Soil Biological Fertility

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 4))

Abstract

Consumers are demanding more organic products, in part because of concerns over environmental issues in conventional agriculture. Modern, high-input agriculture can cause groundwater contamination, soil erosion, and eutrophication of surface waters. It may be possible to enhance natural nutrient cycling and reduce our dependence on inorganic fertilizers in cropping systems. To do so, we have to manage our cropping systems to encourage diverse soil microbial communities and arbuscular mycorrhizal fungi. This chapter reviews the impacts of cropping management practices on soil microbial diversity and arbuscular mycorrhizal communities. Systems that have reduced tillage, diverse crop rotations or intercrops, low applications of inorganic fertilizers and pesticides, and some organic fertility inputs tend to encourage a large and diverse microbial community with mycorrhizal fungi. Organic systems should strive for minimum tillage and the avoidance of bare soil fallow in rotation. Well-managed conventional systems with minimum tillage and inorganic crop inputs can be as effective as organic systems in encouraging soil biological fertility. Both organic and conventional cropping systems should incorporate intercrops into their systems to encourage diversity within the soil system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular–arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150. doi:10.1016/0167-8809(91)90048-3

    Article  Google Scholar 

  • Aikio S, Ruotsalainen AL (2002) The modelled growth of mycorrhizal and non-mycorrhizal plants under constant versus variable soil nutrient concentration. Mycorrhiza 12:257–261. doi:10.1007/s00572-002-0178-5

    Article  PubMed  CAS  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269. doi:10.1007/s00572-003-0265-2

    Article  PubMed  Google Scholar 

  • Anderson T-H (2003) Microbial eco-physiological indicators to assess soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Belnap J (2005) Cyanobacteria and algae. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJ, pp 162–180

    Google Scholar 

  • Biederbeck VO, Zentner RP, Campbell CA (2005) Soil microbial populations and activities as influenced by legume green fallow in a semiarid climate. Soil Biol Biochem 37:1775–1784. doi:10.1016/j.soilbio.2005.02.011

    Article  CAS  Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian Ultisol. Plant Soil 218:137–144. doi:10.1023/A:1014966801446

    Article  CAS  Google Scholar 

  • Bonkowski M, Roy J (2005) Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia 143:232–240. doi:10.1007/s00442-004-1790-1

    Article  PubMed  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12. doi:10.1007/s002489900087

    Article  PubMed  CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Brechelt A (1990) Effect of different organic manures on the efficiency of VA mycorrhiza. Agric Ecosyst Environ 29:55–58. doi:10.1016/0167-8809(90)90254-B

    Article  Google Scholar 

  • Brussaard L, Kuyper TW, Didden WAM, de Goede RGM, Bloem J (2004) Biological soil quality from biomass to biodiversity – importance and resilience to management stress and disturbance. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing Soil Quality: Challenges in Modern Agriculture. CABI Publishing, Cambridge, MA, pp 139–161

    Chapter  Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. doi:10.1016/j.agee.2006.12.013

    Article  Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21. doi:10.1007/s002480000108

    PubMed  CAS  Google Scholar 

  • Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agroecosystems. Environ Microbiol 5:441–452. doi:10.1046/j.1462-2920.2003.00404.x

    Article  PubMed  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406. doi:10.1071/SR05125

    Article  Google Scholar 

  • Calderón FJ, Jackson LE, Scow KM, Rolston DE (2000) Microbial responses to simulated tillage and in cultivated and uncultivated soils. Soil Biol Biochem 32:1547–1559. doi:10.1016/S0038-0717(00)00067-5

    Article  Google Scholar 

  • Clapperton MJ, Janzen HH, Johnston AM (1997) Suppression of VAM fungi and micronutrient uptake by low-level P fertilization in long-term wheat rotations. Am J Alternat Agric 12:59–63

    Article  Google Scholar 

  • Coleman DC, Dighton J, Ritz K, Giller KE, Ritz K, Dighton J, Giller KE (1994) Perspectives on the compositional and functional analysis of soil communities. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Toronto, ON, pp 261–271

    Google Scholar 

  • Cookson WR, Murphy DV, Roper MM (2008) Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol Biochem 40:763–777. doi:10.1016/j.soilbio.2007.10.011

    Article  CAS  Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184. doi:10.1007/s00572-003-0254-5

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Abbott L (2006) Soil fertility in organic farming systems. In: Kristiansen P, Taji A, Reganold J (eds) Organic agriculture: a global perspective. Comstock Publishing Associates, Ithaca, NY, pp 25–51

    Google Scholar 

  • De Neve S, Sáez SG, Daguilar BC, Sleutel S, Hofman G (2004) Manipulating N mineralization from high N crop residues using on- and off-farm organic materials. Soil Biol Biochem 36:127–134. doi:10.1016/j.soilbio.2003.08.023

    Article  CAS  Google Scholar 

  • Douds DD Jr, Galvez L, Franke-Snyder M, Reider C, Drinkwater LE (1997) Effect of compost addition and crop rotation point upon VAM fungi, Agric Ecosyst Environ 65:257–266. doi: 10.1016/S0167-8809(97)00075-3

    Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93. doi:10.1016/S0167-8809(99)00031-6

    Article  Google Scholar 

  • Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430. doi:10.1007/s00248-003-1063-2

    Article  PubMed  CAS  Google Scholar 

  • Drinkwater LE, Letourneau DK, Workneh F, van Bruggen HC, Shennan C (1995) Fundamental differences between conventional and organic tomato agroecosystems in California, Ecol Appl 5:1098–1112

    Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318. doi:10.1128/AEM.69.12.7310-7318.2003

    Article  PubMed  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    Article  PubMed  CAS  Google Scholar 

  • Eason WR, Scullion J, Scott EP (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agric Ecosyst Environ 73:245–255. doi:10.1016/S0167-8809(99)00054-7

    Article  Google Scholar 

  • Entz MH, Guilford R, Gulden R (2001) Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. Can J Plant Sci 81:351–354

    Article  CAS  Google Scholar 

  • Entz MH, Penner KR, Vessey JK, Zelmer CD, Thiessen Martens JR (2004) Mycorrhizal colonization of flax under long-term organic and conventional management. Can J Plant Sci 84:1097–1099

    Article  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular–arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71. doi:10.1111/j.1469-8137.1990.tb00374.x

    Article  Google Scholar 

  • Fauci MF, Dick RP (1994) Soil microbial dynamics: short- and long-term effects of inorganic and organic nitrogen. Soil Sci Soc Am J 58:801–806

    Article  Google Scholar 

  • Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768. doi:10.1016/S0038-0717(99)00197-2

    Article  Google Scholar 

  • Fließbach A, Mäder P, Insam H, Rangger A (1997) Carbon source utilization by microbial communities in soils under organic and conventional farming practice. In: Insam H, Rangger A (eds)Microbial communities – functional versus structural approaches. Springer, Berlin, Germany, pp 109–120

    Google Scholar 

  • Fraser DG, Doran JW, Sahs WW, Lesoing GW (1988) Soil microbial populations and activities under conventional and organic management. J Environ Qual 17:585–590

    Article  Google Scholar 

  • Frostegård Å, Petersen SO, Bååth E, Nielsen TH (1997) Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses. Appl Environ Microbiol 63:2224–2231

    PubMed  Google Scholar 

  • Galvez L, Douds DD Jr, Wagoner P (2001) Tillage and farming system affect AM fungus populations, mycorrhizal formation, and nutrient uptake by winter wheat in a high-P soil. Am J Alternat Agric 16:152–160

    Article  Google Scholar 

  • Galvez L, Douds DD Jr, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Alternat Agric 10:152–156

    Google Scholar 

  • Garbeva P, Postma J, van Veen JA, van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Micro 8:233–246. doi:10.1111/j.1462-2920.2005.00888.x

    Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415. doi:10.1007/s003740100343

    Article  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16. doi:10.1016/S0929-1393(96)00149-7

    Article  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809. doi:10.1128/AEM.69.3.1800-1809.2003

    Article  PubMed  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35. doi:10.1016/j.agee.2005.09.009

    Article  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378. doi:10.1016/S0038-0717(97)00124-7

    Article  CAS  Google Scholar 

  • Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47:104–113. doi:10.1007/s00248-002-2043-7

    Article  PubMed  CAS  Google Scholar 

  • Habte M (2006) The roles of arbuscular mycorrhizas in plant and soil health. In: Uphoff N, Ball AS, Fernandes ECM, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P (eds) Biological approaches to sustainable soil systems. Taylor & Francis Group LLC, Boca Raton, FL, pp 129–148

    Chapter  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    Article  CAS  Google Scholar 

  • Hamel C, Strullu DG (2006) Arbuscular mycorrhizal fungi in field crop production: potential and new direction. Can J Plant Sci 86:941–950

    Article  Google Scholar 

  • Harrier LA, Watson CA (2003) The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79:185–225

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi:10.1016/j.biocon.2004.07.018

    Article  Google Scholar 

  • Huwe B, Titi AE (2003) The role of soil tillage for soil structure. In: El TiTi A (ed) Soil tillage in agroecosystems. CRC Press, Washington, D.C., pp 27–50

    Google Scholar 

  • IFOAM (2008) The definition of organic agriculture. International Federation of Organic Movements. http://www.ifoam.org/growing_organic/definitions/doa/index.html. Accessed 17 March 2009

  • Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114:305–317. doi:10.1016/S0016-7061(03)00046-6

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234. doi:10.1007/s00572-002-0163-z

    Article  PubMed  CAS  Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sorensen J (2001) Pesticide effects on bacterial diversity in agricultural soils – a review. Biol Fertil Soils 33:443–453. doi:10.1007/s003740100351

    Article  CAS  Google Scholar 

  • Jordan N, Zhang J, Huerd S (2000) Arbuscular–mycorrhizal fungi: potential roles in weed management. Weed Res 40:397–410. doi:10.1046/j.1365-3180.2000.00207.x

    Article  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhiza. Can J Plant Sci 85:23–29

    Article  Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174. doi:10.1016/S0167-8809(99)00121-8

    Article  Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:285–293. doi:10.1023/A:1004205828485

    Article  CAS  Google Scholar 

  • Kennedy AC, Gewin VL (1997) Soil microbial diversity: present and future considerations. Soil Sci 162:607–617

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86. doi:10.1007/BF02183056

    Article  CAS  Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Till Res 61:61–76. doi:10.1016/S0167-1987(01)00179-9

    Article  Google Scholar 

  • Klonsky K (2000) Forces impacting the production of organic foods. Agric Hum Values 17:233–243. doi:10.1023/A:1007655312687

    Article  Google Scholar 

  • Koo B-J, Adriano DC, Bolan NS, Barton CD (2006) Root exudates and microorganisms. Curr Opin Biotechnol 17:421–428. doi:10.1016/B0-12-348530-4/00461-6

    Google Scholar 

  • Lampkin NH, Padel S (1994) Researching organic farming systems. In: Lampkin NH, Padel S (eds) The economics of organic farming: an international perspective. CAB International, Wallingford, Oxon, pp 27–43

    Google Scholar 

  • Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Aust J Soil Res 30:855–892. doi:10.1071/SR9920855

    Article  Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13. doi:10.1007/s11104-004-1610-8

    Article  CAS  Google Scholar 

  • Lundquist EJ, Scow KM, Jackson LE, Uesugi SL, Johnson CR (1999) Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol Biochem 31:1661–1675. doi:10.1016/S0038-0717(99)00080-2

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741. doi:10.1016/S0038-0717(98)00025-X

    Article  CAS  Google Scholar 

  • Macey A (2006) Certified Organic Production in Canada 2005. [Online] Available: http://www.cog.ca/documents/certifiedorganicproduction05E_000.pdf [March 16, 2008]

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156. doi:10.1007/s003740050638

    Article  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Manske GGB (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. Agric Ecosyst Environ 29:273–280

    Article  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and functionl of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461. doi:10.1016/S0038-0717(02)00297-3

    Article  CAS  Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137. doi:10.1081/PLN-120016500

    Article  CAS  Google Scholar 

  • Mohammad MJ, Pan WL, Kennedy AC (2005) Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root. Mycorrhiza 15:259–266. doi:10.1007/s00572-004-0327-0

    Article  PubMed  Google Scholar 

  • Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agric Hortic 3:191–209

    Article  Google Scholar 

  • Neal JL, Larson RI, Atkinson TG (1972) Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39:209–212. doi:10.1007/BF00018061

    Article  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant Soil 232:135–145. doi:10.1023/A:1010394221729

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824. doi:10.1128/AEM.69.5.2816-2824.2003

    Article  PubMed  CAS  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. doi:10.1007/s00442-003-1458-2

    Article  PubMed  Google Scholar 

  • Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl Soil Ecol 28:1–13. doi:10.1016/j.apsoil.2004.07.001

    Article  Google Scholar 

  • Patriquin DG (1986) Biological husbandry and the “nitrogen problem”. Biol Agric Hortic 3:167–189

    Article  Google Scholar 

  • Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019. doi:10.1016/S0038-0717(01)00004-9

    Article  CAS  Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 55:573–582. doi:10.1641/0006-3568(2005) 055[0573:EEAECO]2.0.CO;2

    Article  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhiza in a soil of moderate P-fertility. Plant Soil 70:199–209. doi:10.1007/BF02374780

    Article  CAS  Google Scholar 

  • Prasad R, Power JF (1997) Soil fertility management for sustainable agriculture. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Rabatin SC, Stinner BR (1989) The significance of vesicular–arbuscular mycorrhizal fungal-soil macroinvertebrate interactions in agroecosystems. Agric Ecosyst Environ 27:195–204. doi:10.1016/0167-8809(89)90085-6

    Article  Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo JA, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 7:51–57. doi:10.1016/S0929-1393(97)00025-5

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhiza, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Ritson C, Oughton E (2007) Food consumers and organic agriculture. In: Frewer L, van Trijp H (eds) Understanding consumers of food products. CRC Press, Boca Raton, FL, pp 254–272

    Chapter  Google Scholar 

  • Robertson GP, Grandy AS (2006) Soil system management in temperate regions. In: Uphoff N, Ball AS, Fernandes ECM, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P (eds) Biological approaches to sustainable soil systems. Taylor & Francis Group LLC, Boca Raton, FL, pp 27–39

    Chapter  Google Scholar 

  • Ryan MH, Chilvers GA, Dumaresq DC (1994) Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 160:33–40. doi:10.1007/BF00150343

    Article  Google Scholar 

  • Ryan MH, Derrick JW, Dann PR (2004) Grain mineral concentrations and yield of wheat grown under organic and conventional management. J Sci Food Agric 84:207–216. doi:10.1002/jsfa.1634

    Article  CAS  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271. doi:10.1023/A:1020207631893

    Article  CAS  Google Scholar 

  • Sahota M, Willer H, Yussefi M (2004) Overview of the global market for organic food and drink. In: Willer H, Yussefi M (eds) The world of organic agriculture: statistics and emerging trends 2004. IFOAM, Bonn, Germany, pp 21–26

    Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth, Belmont, CA

    Google Scholar 

  • Sattelmacher B, Reinhard S, Pomikalko A (1991) Differences in mycorrhizal colonization of rye (Secale cereale L.) grown in conventional or organic (biological-dynamic) farming systems. J Agron Crop Sci 167:350–355

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi:10.1890/03-8002

    Article  Google Scholar 

  • Scullion J, Eason WR, Scott EP (1998) The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil 204:243–254. doi:10.1023/A:1004319325290

    Article  CAS  Google Scholar 

  • Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol 5:867–877. doi:10.1046/j.1462-2920.2003.00477.x

    Article  PubMed  CAS  Google Scholar 

  • Seghers D, Siciliano SD, Top EM, Verstraete W (2005) Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol Biochem 37:187–193. doi:10.1016/j.soilbio.2004.05.025

    Article  CAS  Google Scholar 

  • Shannon D, Sen AM, Johnson DB (2002) A comparitive study of the microbiology of soils managed under organic and conventional regimes. Soil Use Manag 18:274–283. doi:10.1111/j.1475-2743.2002.tb00269.x

    Article  Google Scholar 

  • Shepherd MA, Harrison R, Webb J (2002) Managing soil organic matter – implications for soil structure on organic farms. Soil Use Manag 18:284–292

    Article  Google Scholar 

  • Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272. doi:10.1016/S0168-6496(99)00019-7

    Article  CAS  Google Scholar 

  • Siciliano SD, Theoret CM, de Freitas JR, Hucl PJ, Germida JJ (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44:844–851

    Article  CAS  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 43:565–574. doi:10.1007/s00374-006-0139-9

    Article  CAS  Google Scholar 

  • Soule JD, Piper JK (1992) Farming in nature’s image. Island Press, Washington D.C.

    Google Scholar 

  • Stark CHE, Condron LM, Stewart A, Di HJ, O’Callaghan M (2004) Small-scale spatial variability of selected soil biological properties. Soil Biol Biochem 36:601–608. doi:10.1016/j.soilbio.2003.12.005

    Article  CAS  Google Scholar 

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on soil microbial properties and processes. Appl Soil Ecol 35:79–93. doi:10.1016/j.apsoil.2006.05.001

    Article  Google Scholar 

  • Stejskalova H (1990) The role of mycorrhizal infection in weed–crop interactions. Agric Ecosyst Environ 29:415–419. doi:10.1016/0167-8809(90)90308-Z

    Article  Google Scholar 

  • Stewart LI, Hamel C, Hogue R, Moutoglis P (2005) Arbuscular mycorrhizal inoculated strawberry plant responses in a high soil phosphorus rotation crop system. Mycorrhiza 15:612–619. doi:10.1007/s00572-005-0003-z

    Article  PubMed  CAS  Google Scholar 

  • Stockdale EA, Shepherd MA, Fortune S, Cuttle SP (2002) Soil fertility in organic farming systems – fundamentally different? Soil Use Manag 18:301–308. doi:10.1111/j.1475-2743.2002.tb00272.x

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microb 44:162–167

    Article  CAS  Google Scholar 

  • Suzuki C, Kunito T, Aono T, Liu C-T, Oyaizu H (2005) Microbial indices of soil fertility. J Appl Microbiol 98:1062–1074. doi:10.1111/j.1365-2672.2004.02529.x

    Article  PubMed  CAS  Google Scholar 

  • Sylvia DM (2005) Mycorrhizal symbioses. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River, NJ, pp 263–282

    Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Article  Google Scholar 

  • Thies JE, Grossman JM (2006) The soil habitat and soil ecology. In: Uphoff N, Ball AS, Fernandes ECM, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P (eds) Biological approaches to sustainable soil systems. Taylor & Francis Group LLC, Boca Raton, FL, pp 59–78

    Chapter  Google Scholar 

  • Uphoff N, Ball AS, Fernandes ECM, Herren H, Husson O, Palm C, Pretty J, Sanginga N, Thies JE (2006) Understanding the functioning and management of soil systems. In: Uphoff N, Ball AS, Fernandes ECM, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P (eds) Biological approaches to sustainable soil systems. Taylor & Francis Group LLC, Boca Raton, FL, pp 3–13

    Chapter  Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. doi:10.1016/S0167-8809(97)00150-3

    Article  Google Scholar 

  • Vatovec C, Jordan N, Huerd S (2005) Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renew Agric Food Syst 20:181–189. doi:10.1079/RAF2005115

    Article  Google Scholar 

  • von Fragstein M, Niemsdorff P, Kristiansen P (2006) Crop agronomy in organic agriculture. In: Kristiansen P, Taji A, Reganold J (eds) Organic agriculture: a global perspective. Comstock Publishing Associates, Ithaca, NY, pp 53–82

    Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi:10.1016/j.soilbio.2007.10.015

    Article  CAS  Google Scholar 

  • Wander MM, Hedrick DS, Kaufman D, Traina SJ, Stinner BR, Kehrmeyer SR, White DC (1995) The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170:87–97. doi:10.1007/BF02183057

    Article  CAS  Google Scholar 

  • Wander MM, Traina SJ, Stinner BR, Peters SE (1994) Organic and conventional management effects on biologically active soil organic matter pools. Soil Sci Soc Am J 58:1130–1139

    Article  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247. doi:10.1111/j.1475-2743.2002.tb00265.x

    Article  Google Scholar 

  • Weil RR, Lowell KA, Shade HM (1993) Effects of intensity of agronomic practices on a soil ecosystem. Am J Alternat Agric 8:5–14

    Article  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193. doi:10.1080/07352680490433295

    Article  CAS  Google Scholar 

  • Werner MR, Dindal DL (1990) Effects of conversion to organic agricultural practices on soil biota. Am J Alternat Agric 5:24–32

    Article  Google Scholar 

  • Wu T, Chellemi DO, Martin KJ, Graham JH, Rosskopf EN (2007) Discriminating the effects of agricultural land management practices on soil fungal communities. Soil Biol Biochem 39:1139–1155. doi:10.1016/j.soilbio.2006.11.024

    Article  CAS  Google Scholar 

  • Xu X, Ouyang H, Kuzyakov Y, Richter A, Wanek W (2006) Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–231. doi:10.1007/s11104-006-9007-5

    Article  CAS  Google Scholar 

  • Yang YH, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol 39:72–79. doi:10.1007/s002489900180

    Article  PubMed  CAS  Google Scholar 

  • Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF (1997) Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J Appl Ecol 34:453–470

    Article  Google Scholar 

  • Yiridoe EK, Bonti-Ankomah S, Martin RC (2005) Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: a review and update of the literature. Renew Agric Food Syst 20:193–205. doi:10.1079/RAF2005113

    Article  Google Scholar 

  • Zaller JG, Köpke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol Fertil Soils 40:222–229. doi:10.1007/s00374-004-0772-0

    Article  Google Scholar 

Download references

Acknowledgments

The first author has been supported by a Canadian Graduate Scholarship from the Natural Sciences and Engineering Research Centre (NSERC) and an Alberta Ingenuity Scholarship. The second author was supported by a Discovery grant from NSERC and research grants from Alberta Crop Industry Development Fund Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Spaner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nelson, A.G., Spaner, D. (2010). Cropping Systems Management, Soil Microbial Communities, and Soil Biological Fertility. In: Lichtfouse, E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8741-6_8

Download citation

Publish with us

Policies and ethics