Skip to main content

Climate and Peatlands

  • Chapter
  • First Online:
Book cover Changing Climates, Earth Systems and Society

Abstract

Peatlands are an important natural archive for past climatic changes, primarily due to their sensitivity to changes in the water balance and the dating possibilities of peat sediments. In addition, peatlands are an important sink as well as potential source of greenhouse gases. The first part of this chapter discusses a range of well-established and novel proxies studied in peat cores (peat humification, macrofossils, testate amoebae, stomatal records from subfossil leaves, organic biomarkers and stable isotope ratios, aeolian sediment influx and geochemistry) that are used for climatic and environmental reconstructions, as well as recent developments in the dating of these sediments. The second part focuses on the role that peatland ecosystems may play as a source or sink of greenhouse gases. Emphasis is placed on the past and future development of peatlands in the discontinuous permafrost areas of northern Scandinavia, and the role of regenerating mined peatlands in north-western Europe as a carbon sink or source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaby B, Tauber H (1975) Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Denmark. Boreas 4:1–14.

    Google Scholar 

  • Aaby B (1976) Cyclic variations in climate over the past 5,500 years reflected in raised bogs. Nature 263:281–284.

    Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ 30:258–270.

    CAS  Google Scholar 

  • Åkerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process 19(3):279–292.

    Google Scholar 

  • Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long-term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst 6:97–120.

    Google Scholar 

  • Aubert D, Le Roux G, Krachler M, Cheburkin A, Kober B, Shotyk W, Stille P (2006) Fate of atmospheric REE entering an ombrotrophic peat bog in Black Forest (SW Germany): Evidence from snow, lichens and mosses. Geochim Cosmochim Acta 70:2815–2826.

    CAS  Google Scholar 

  • Avsejs LA, Nott CJ, Xie S, Maddy D, Chambers FM, Evershed RP (2002) 5-n-Alkylresorcinols as biomarkers of sedges in an ombrotrophic peat section. Org Geochem 33:861–867.

    CAS  Google Scholar 

  • Baas M, Pancost R, van Geel B, Sinninghe Damsté JS (2000) A comparative study of lipids in Sphagnum species. Org Geochem 31:535–541.

    CAS  Google Scholar 

  • Bahnson H (1968) Kolorimetriske bestermmelser af humificeringstal i højmosetørv fra Fuglsø mose på Djursland. Medd Dansk Geol Foren 18:55–63.

    Google Scholar 

  • Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob Planet Change 60:28–41.

    Google Scholar 

  • Barber KE, Dumayne-Peaty L, Hughes PDM, Mauquoy D, Scaife RG (1998) Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: Field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England. J Quat Sci 13:515–528.

    Google Scholar 

  • Barber KE, Chambers FM, Maddy D (2003) Holocene palaeoclimates from peat stratigraphy: Macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quat Sci Rev 22:521–539.

    Google Scholar 

  • Barber KE, Chambers FM, Maddy D (2004) Late Holocene climatic history of northern Germany and Denmark: Peat macrofossil investigations at Dosenmoor, Schleswig-Holstein, and Svanemose, Jutland. Boreas 33:132–144.

    Google Scholar 

  • Beer J, van Geel B (2008) Holocene climate change and the evidence for solar and other forcings. In RW Battarbee, HA Binney (Eds), Natural Climate Variability and Global Warming: A Holocene perspective (pp. 138–162). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Beerling DJ, Chaloner WG (1992) Stomatal density as an indicator of atmospheric CO2 concentration. Holocene 2:71–78.

    Google Scholar 

  • Beerling DJ, Birks HH, Woodward FI (1995) Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves. J Quat Sci 10:379–384.

    Google Scholar 

  • Beilman DB, Vitt DH, Halsey LA (2001) Localized permafrost peatlands in Western Canada: Definition, distributions and degradation. Arct Antarct Alp Res 33(1):70–77.

    Google Scholar 

  • Beilman DW, Vitt DH, Bhatti JS, Forest S (2008) Peat carbon stocks in the southern Mackenzie River Basin: Uncertainties revealed in a high-resolution case study. Glob Chang Biol 14:1–12.

    Google Scholar 

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc Lond Biol Sci 268:1315–1321.

    CAS  Google Scholar 

  • Belyea LR, Baird AJ (2006) Beyond the “limits to peat bog growth”: Cross-scale feedback in peatland development. Ecol Monogr 76:299–322.

    Google Scholar 

  • Bennett KD (1994) Confidence intervals for age estimates and deposition times in late-quaternary sediment sequences. Holocene 4:337–348.

    Google Scholar 

  • Bennett KD, Fuller JL (2002) Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. Holocene 12:421–429.

    Google Scholar 

  • Berglund BE, Malmer N, Persson T (1991) Landscape-ecological aspects of long-term changes in the Ystad area. In BE Berglund (Ed), The Cultural Landscape During 6000 Years in Southern Sweden – The Ystad Project (vol. 41). Ecological Bulletins, Stockholm.

    Google Scholar 

  • Betts RA, Cox PM, Lee SE, et al. (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799.

    CAS  Google Scholar 

  • Birks HH (2007) Plant macrofossil introduction. In SA Elias (Ed), Encyclopedia of Quaternary Science (vol. 3, pp. 2266–2288). Amsterdam: Elsevier.

    Google Scholar 

  • Björck S, Clemmensen LB (2004) Aeolian sediment in raised bog deposits, Halland, SW Sweden: A new proxy record for winter storminess variation in southern Scandinavia? Holocene 14:677–688.

    Google Scholar 

  • Blaauw M, Heuvelink GBM, Mauquoy D, van der Plicht J, van Geel B (2003) A numerical approach to 14C wiggle-match dating of organic deposits: Best fits and confidence intervals. Quat Sci Rev 22:1485–1500.

    Google Scholar 

  • Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Appl Statist 54:805–816.

    Google Scholar 

  • Blackford JJ, Chambers FM (1991) Blanket peat humification: Evidence for a Dark Age (1400 BP) climatic deterioration in the British Isles. Holocene 1:63–67.

    Google Scholar 

  • Blackford JJ, Chambers FM (1993) Determining the degree of peat decomposition for peat-based palaeoclimatic studies. Int Peat J 5:7–24.

    CAS  Google Scholar 

  • Blackford J (2000) Palaeoclimatic records from peat bogs. Trends Ecol Evol 15:193–198.

    Google Scholar 

  • Blockley SPE, Blaauw M, Bronk Ramsey C, van der Plicht J (2007) Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quat Sci Rev 26:1915–1926.

    Google Scholar 

  • Blundell A, Charman DJand, Barber KE (2007) Multiproxy late Holocene peat records from Ireland: Towards a regional palaeoclimate curve. J Quat Sci 23:59–71.

    Google Scholar 

  • Blunier T, Monnin E, Barnola J-M (2005) Atmospheric CO2 data from ice cores: Four climatic cycles. In JR Ehleringer, TE Cerling MD Dearing (Eds), A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems (vol. 177). Ecological Studies. New York, NY: Springer.

    Google Scholar 

  • Blytt A (1876) Essay on the Immigration of the Norwegian Flora During Alternating Rainy and Dry Periods (89p). Christiania: Cammermeye.

    Google Scholar 

  • Booth RK, Jackson ST (2003) A high resolution record of late Holocene moisture variability from a Michigan raised bog. Holocene 13:865–878.

    Google Scholar 

  • Booth RK (2008) Testate amoebae as proxies for mean annual waiter-table depth in Sphagnum-dominated peatlands of North America. J Quat Sci 23:43–57.

    Google Scholar 

  • Borgmark A (2005) Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis. Holocene 15:387–395.

    Google Scholar 

  • Bragazza L (2008) A climatic threshold triggers the die-off ofpeat mosses during an extreme heat wave. Glob Chang Biol 14:2688–2695.

    Google Scholar 

  • Bronk Ramsey C (2007) Deposition models for chronological records. Quat Sci Rev 27:42–60.

    Google Scholar 

  • Brown G (1980) Palsas and other permafrost features in a lower rock creek valley, west-central Alberta. Arctic Alpine Res 12:31–40.

    Google Scholar 

  • Brown J, Romanovsky VE (2008) Report from the International Permafrost Association: State of permafrost in the first decade of the 21st century. Permafr Periglac Process 19:255–260.

    Google Scholar 

  • Bubier JL, Moore TR, Juggins S (1995) Predicting methane emissions from bryophyte distribution in northern Canadian peatlands. Ecology 76(3):677–693.

    Google Scholar 

  • Bunce JA (2004) Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140:1–10.

    Google Scholar 

  • Buttler A, Warner BG, Grosvernier P, Matthey Y (1996) Vertical patterns of testate amoebae (Protozoa: Rhizopoda) and peat forming vegetation on cutover bogs in the Jura, Switzerland. New Phytol 134:371–382.

    Google Scholar 

  • Bücher A, Lucas C (1984) Sédimentation éolienne intercontinentale, poussières sahariennes et géologie. Bulletin du Centre de recherche, exploration et production Elf-Aquitaine 8:151–165.

    Google Scholar 

  • Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Change 68:135–152.

    CAS  Google Scholar 

  • Caseldine C, Baker A, Charman D, Hendon D (2000) A comparative study of optical properties of NaOH peat extracts: Implications for humification studies. Holocene 10:649–658.

    Google Scholar 

  • Caseldine CJ, Thompson G, Langdon C, Hendon D (2005) ‘Evidence for an extreme climatic event on Achill Island, Co. Mayo Ireland around 5200–5100 cal yr BP’. J Quat Sci 20:169–178.

    Google Scholar 

  • Chambers FM (1984) Studies on the initiation, growth-rate and humification of ‘blanket peats’ in South Wales, Occasional Paper No. 9. Keele University: Department of Geography.

    Google Scholar 

  • Chambers FM (1988) Peat humification: Proxy climatic record or indicator of land-use history? In S Limbrey (Ed), Soils and Human Settlement (pp. 27–44). Bangor: Welsh Soils Discussion Group, Report 26.

    Google Scholar 

  • Chambers FM, Barber KE, Maddy D, Brew J (1997) A 5500-year proxy-climate and vegetational record from blanket mire at Talla Moss, Peebleshire, Scotland. Holocene 7:391–399.

    Google Scholar 

  • Chambers FM, Mauquoy D, Todd PA (1999 ) Recent rise to dominance of Molinia caerulea in environmentally sensitive areas: New perspectives from palaeoecological data. J Appl Ecol 36:719–733.

    Google Scholar 

  • Chambers FM, Charman DJ (2004) Holocene environmental change: Contributions from the peatland archive. Holocene 14(1):1–6.

    Google Scholar 

  • Chambers FM, Mauquoy D, Brain SA, Blaauw M, Daniell JRG (2007a) Globally synchronous climate change 2800 years ago: Proxy data from peat in South America. Earth Planet Sci Lett 253:439–444.

    CAS  Google Scholar 

  • Chambers FM, Mauquoy D, Gent A, Pearson F, Daniell JRG, Jones PS (2007b) Palaeoecology of degraded blanket mire in South Wales: Data to inform conservation management. Biol Conserv 137:197–209.

    Google Scholar 

  • Chapman S, Buttler A, Francez A-J, Laggoun-Défarge F, Vasander HMS, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell EAD (2003) Commercial exploitation of peatlands and maintenance of biodiversity – A conflict between economy and ecology. Front Ecol Environ 1:525–532.

    Google Scholar 

  • Charman DJ (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J R Soc N Z 27:465–483.

    Google Scholar 

  • Charman DJ, Warner B (1997) The ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: Modelling hydrological relationships for paleoenvironmental reconstruction. Ecoscience 4:555–562.

    Google Scholar 

  • Charman DJ, Hendon D, Woodland WA (2000) The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats. Technical Guide No. 9. London: Quaternary Research Association.

    Google Scholar 

  • Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat Sci Rev 20:1753–1764.

    Google Scholar 

  • Charman DJ (2002) Peatlands and Environmental Change (301p). Chichester: Wiley.

    Google Scholar 

  • Charman DJ, Blundell A, Chiverrell RC, Hendon D, Langdon PG (2006) Compilation of non-annually resolved Holocene proxy climate records: Stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quat Sci Rev 25:336–350.

    Google Scholar 

  • Charman DJ (2007) Summer water deficit variability controls on peatland water-table changes: Implications for Holocene palaeoclimate reconstructions. Holocene 17:217–227.

    Google Scholar 

  • Charman DJ, Blundell A, ACCROTELM members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221.

    Google Scholar 

  • Charman DJ, Barber KE, Blaauw M, Langdon PG, Mauquoy D, Daley T, Hughes PDM, Karofeld E (2009) Climate drivers for peatland palaeoclimate records. Quat Sci Rev 28:1811–1819.

    Google Scholar 

  • Christen JA, Clymo D, Litton CD (1995) A Bayesian approach to the use of 14C dates in the estimation of the age of peat. Radiocarbon 37:431–442.

    CAS  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett 31:L04501.

    Google Scholar 

  • Christensen TR, Johansson T, Olsrud M, Ström L, Lindroth A, Mastepanov M, Malmer N, Friborg T, Crill PM, Callaghan TV (2009) A catchment scale process study of carbon and greenhous gas exchange in a subarctic landscape. In S Fronzek, M Johansson, TR Christensen, TR Carter, T Friborg, M Luoto (Eds), Proceedings of the PALSALARM Symposium, Abisko, Sweden, 28–30 October 2008 (vol. 3:pp. 41–43). Reports of Finnish Environment Institute.

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental Isotopes in Hydrogeology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Clemmensen LB, Murray A, Heinemeier J, De Jong R (2009) The evolution of Holocene coastal dunefields, Jutland, Denmark: A record of climate change over the past 5000 years. Geomorphology 105:303–313.

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: An approach to regression analysis by local fitting. J Am Statist Assoc 83:596–610.

    Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654.

    Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184.

    CAS  Google Scholar 

  • Davis SR, Wilkinson DM (2004) The conservation management value of testate amoebae as ‘restoration’ indicators: Speculations based on two damaged raised mires in northwest England. Holocene 14:135–143.

    Google Scholar 

  • De Jong R, Björck S, Björkman L, Clemmensen LB (2006) Storminess variation during the last 6500 years as reconstructed from an ombrotrophic peat bog in Halland, southwest Sweden. J Quat Sci 21:905–919.

    Google Scholar 

  • De Jong R, Hammarlund D, Nesje A (2009) Late Holocene effective precipitation variations in the maritime regions of south-west Scandinavia. Quat Sci Rev 28:54–64.

    Google Scholar 

  • de Vleeschouwer F, Cheburkin A, Le Roux G, Piotrowska N, Sikorski J, Lamentowicz M, Fagel N, Mauquoy M (2009) Multiproxy evidences of Little Ice Age palaeoenvironmental changes in a peat bog from northern Poland. Holocene 19:625–637.

    Google Scholar 

  • Deevey E (1969) Coaxing history to conduct experiments. BioScience 19:40–43.

    Google Scholar 

  • Doutriaux-Boucher M, Webb MJ, Gregory JM, et al. (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi: 10.1029/2008GL036273.

    Google Scholar 

  • Eide W, Birks HH (2006) Stomatal frequency of Betula pubescens and Pinus sylvestris shows no proportional relationship with atmospheric CO2 concentration. Nordic J Bot 24:327–339.

    CAS  Google Scholar 

  • Finsinger W, Wagner-Cremer F (2009) Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: A method assessment using a calibration and validation approach. Holocene 19:757–764.

    Google Scholar 

  • Fletcher M-S, Thomas I (2007) Holocene vegetation and climate change from near Lake Pedder, south-west Tasmania, Australia. J Biogeogr 34:665–677.

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, et al. (2007) Changes in atmospheric constituents and in radiative forcing. In S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press.

    Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347.

    CAS  Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401.

    Google Scholar 

  • Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12.

    Google Scholar 

  • Fronzek S, Carter TR, Räisänen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: A case study for sub-arctic palsa mires in Fennoscandia. Clim Change 99:515–534.

    Google Scholar 

  • Görres M, Frenzel B (1993) The Pb, Br, and Ti content in peat bogs as indicator for recent and past depositions. Naturwissenschaften 80:333–335.

    Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert Dust in the Global System (287 pp). Heidelberg: Springer.

    Google Scholar 

  • Gray JE, Holroyd GH, Van der Lee FM, et al. (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716.

    CAS  Google Scholar 

  • Hajdas I, Lowe DJ, Newnham RM, Bonani G (2006) Timing of the late-glacial climate reversal in the Southern Hemisphere using high-resolution radiocarbon chronology for Kaipo bog, New Zealand. Quat Res 65(2):340–345.

    Google Scholar 

  • Hájek M, Horsák M, Hájkova P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol Evol Syst 8:97–114.

    Google Scholar 

  • Halsey LA, Vitt DA, Zoltai SC (1995) Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Change 30:57–73.

    Google Scholar 

  • Heal WO (1961) The distribution of testate amoebae (Rhizopoda: Testacea) in some fens and bogs in northern England. J Linnean Soc Zool 44:369–382.

    Google Scholar 

  • Heal OW (1964) Observations on the seasonal and spatial-distribution of Testacea (Protozoa, Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412.

    Google Scholar 

  • Heger TJ, Mitchell EAD, Todorov M, Golemansky V, Lara E, Pawlowski J (2010) Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggest transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phylogenet Evol 55:113–122.

    Google Scholar 

  • Heijmans MMPD, Mauquoy D, van Geel B, Berendse F (2008) Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. J Veg Sci 19:307–320.

    Google Scholar 

  • Hendon D, Charman D, Kent M (2001) Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: Within-site variability, between-site comparability and palaeoclimatic implications. Holocene 11:127–148.

    Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908.

    CAS  Google Scholar 

  • Hofgaard A (2006) Overvåkning av palsmyr. Forstegangsundersökelse i Dovre 2005: Haukskardmyrin og Haugtjörnin. NINA Rapport 154.

    Google Scholar 

  • Hölzer A, Hölzer A (1998) Silicon and titanium in peat profiles as indicators of human impacts. Holocene 8:685–696.

    Google Scholar 

  • Hughes PDM, Mauquoy D, Barber KE, Langdon P (2000) Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. Holocene 10:465–479.

    Google Scholar 

  • Hughes PDM, Barber KE (2004) Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England. Holocene 14:65–77.

    Google Scholar 

  • Hughes PDM, Blundell A, Charman DJ, Bartlett S, Daniell JRG, Wojatschke A, Chambers FM (2006) A 9000 cal year multi-proxy climate record from a bog in eastern Newfoundland: Contributions of meltwater discharge and solar forcing. Quat Sci Rev 25:1208–1227.

    Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. In S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (Eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (996 pp). Cambridge, UK; New York, NY : Cambridge University Press.

    Google Scholar 

  • Jackson RB, Carpenter SR, Dahm CN, et al. (2001) Water in a changing world. Ecol Appl 11:1027–1045.

    Google Scholar 

  • Jessen CA, Rundgren M, Björck S, et al. (2005) Abrupt climatic changes and an unstable transition into a late Holocene Thermal Decline: A multiproxy lacustrine record from southern Sweden. J Quat Sci 20:349–362.

    Google Scholar 

  • Jessen CA, Rundgren M, Björck S, et al. (2007) Climate forced atmospheric CO2 variability in the early Holocene: A stomatal frequency reconstruction. Glob Planet Change 57:247–260.

    Google Scholar 

  • Johansson M, Callaghan TV, Åkerman J, Jackowicz-Korczynski M, Christensen TR (submitted) Rapid response of active layer thickness and vegetation greenness in sub-arctic Sweden to experimentally increased snow cover. Arct Antarct Alp Res.

    Google Scholar 

  • Johansson T, Malmer N, Crill PM, Friborg T, Akerman JH, Mastepanov M, Christensen TR (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Chang Biol 12:2352–2369.

    Google Scholar 

  • Johansson M, Akerman HJ, Jonasson C, Christensen TR, Callaghan TV (2008) Increasing permafrost temperatures in subarctic Sweden. In DL Kane, KM Hinkel (Eds), Ninth International Conference on Permafrost (pp. 851–856). University of Alaska Fairbanks (I): Institute of Northern Engineering.

    Google Scholar 

  • Johansson M, Fronzek S, Christensen TR, Luoto M, Carter TR (2009) Risk of disappearing sub-arctic palsa mires in Europe. In J Settele, L Penev, T Georgiev, R Grabaum, V Grobelnik, V Hammer, S Klotz, I Kühn (Eds), Atlas of Biodiversity Risks – From Europe to the Globe, from Stories to Maps. Sofia and Moscow: Pensoft (in press).

    Google Scholar 

  • Johnson LC, Damman AWH (1991) Species controlled Sphagnum decay on a south Swedish raised bog. Oikos 61:234–242.

    Google Scholar 

  • Jones MC, Peteet DM, Kurdyla D, Guilderson T (2009) Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska. Quat Res 72:207–217.

    CAS  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105:1425–1430.

    CAS  Google Scholar 

  • Joosten H, Clarke D (2002) Wise Use of Mires and Peatlands. Background and Principles Including a Framework for Decision-Making. Finland: International Mire Conservation Group and International Peat Society.

    Google Scholar 

  • Kamenov GD, Brenner M, Tucker JL (2009) Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ~1500 AD to present. Geochim Cosmochim Acta 73(12):3549–3567. ISSN 0016-7037, DOI: 10.1016/j.gca.2009.03.017.

    CAS  Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, et al. (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In JR Ehleringer, TE Cerling, MD Dearing (Eds), A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems (pp. 83–113). New York, NY: Springer. http://scrippsco2.ucsd.edu/data/atmospheric_co2.html

    Google Scholar 

  • Keeling RF, Piper SC, Bollenbacher AF, et al. (2008) Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.

    Google Scholar 

  • Kilian MR, van der Plicht J, van Geel B (1995) Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quat Sci Rev 14:959–966.

    Google Scholar 

  • Kilian MR, van Geel B, van der Plicht J (2000) 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quat Sci Rev 19:1011–1033.

    Google Scholar 

  • Kirpotin SN, Naumov AV, Vorobiov SN, Mironycheva-Tokareva NP, Kosych NP, Lapshina ED, Marquand J, Kulizhski SP, Bleuten W (2007) Western-siberian peatlands: Indicators of climate change and their role in global carbon balance. In R Lal, M Suleimenov, BA Stewart, DO Hansen, P Doraiswamy (Eds), Chapter 33 in Climate Change and Terrestrial Carbon Sequestration in Central Asia (pp. 453–472). Amsterdam, Holland: Taylor and Francis.

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas-conduits to the atmosphere: Implications for tundra carbon budgets. Science 251:298–301.

    CAS  Google Scholar 

  • Kohler J, Brandt O, Johansson M, Callaghan TV (2006) A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Res 25:91–113.

    Google Scholar 

  • Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010) Wetland development, permafrost history and nutrient cycling inferred from Holocene peat and lake sediment records in subarctic Sweden. J Paleolimnol 44:327–342.

    Google Scholar 

  • Kokfelt U, Rosén P, Schoning K, Christensen TR, Förster J, Karlsson J, Reuss N, Rundgren M, Callaghan TV, Jonasson C, Hammarlund D (2009) Ecosystem responses to increased precipitation and permafrost decay in sub-arctic Sweden inferred from peat and lake sediments. Glob Chang Biol 15(7):1652–1663.

    Google Scholar 

  • Kouwenberg LLR, McElwain JC, Kürschner WM, et al. (2003) Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. Am J Bot 90:610–619.

    Google Scholar 

  • Kouwenberg L, Wagner R, Kürschner W, et al. (2005) Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology 33:33–36.

    CAS  Google Scholar 

  • Kuhry P, Turunen J (2006) The postglacial development of boreal and subarctic peatlands. In RK Wieder, DH Vitt (Eds), Boreal Peatland Ecosystems (pp. 25–46). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Kuhry P (2008) Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: Timing, pathways and causes. Boreas 37:316–327.

    Google Scholar 

  • Kummerow J, Mills JM, Ellis BA, Kummerow A (1988) Growth dynamics of cotton-grass (Eriophorum vaginatum). Can J Bot Rev Can Bot 66:253–256.

    Google Scholar 

  • Kylander ME, Weiss DJ, Cortizas AM (2005) Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using an 8000 year old peat core from NW Spain. Earth Planet Sci Lett 240:467–485. ISSN: 0012–821X.

    CAS  Google Scholar 

  • Kylander ME, Muller J, Wust RAJ (2007) Rare earth element and Pb isotope variations in a 52 kyr peat core from Lynch’s Crater (NE Queensland, Australia): Proxy development and application to paleoclimate in the Southern Hemisphere. Geochim Cosmochim Acta 71:942–960. ISSN: 0016–7037.

    CAS  Google Scholar 

  • Körner C (2006) Plant CO2 responses: An issue of definition, time and resource supply. New Phytol 172:393–411.

    Google Scholar 

  • Kürschner WM (1997) The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) – Implications for their use as biosensors of palaeoatmospheric CO2 levels. Rev Palaeobot Palynol 96:1–30.

    Google Scholar 

  • Kürschner WM, Wagner F, Visscher EH, et al. (1997) Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: Constraints from historical observations. Geologische Rundschau 86:512–517.

    Google Scholar 

  • Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci 105:449–453.

    Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, et al. (2001) Signals from mature to new leaves. Nature 411:154.

    CAS  Google Scholar 

  • Lake JA, Woodward FI (2008) Response of stomatal numbers to CO2 and humidity: Control by transpiration rate and abscisic acid. New Phytol 179:397–404.

    CAS  Google Scholar 

  • Lamentowicz Ł, Lamentowicz M, Gąbka M (2008a) Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28:164–175.

    Google Scholar 

  • Lamentowicz M, Obremska M, Mitchell EAD (2008b) Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle hole mire in Northern Poland. Rev Palaeobot Palynol 151:21–40.

    Google Scholar 

  • Lamentowicz M, Milecka K, Gałka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz Ł, van der Knaap WO (2009a) Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen, and tree-rings of pine. Boreas 38:214–229.

    Google Scholar 

  • Lamentowicz M, Van der Knaap P, Lamentowicz Ł, Van Leeuwen JFN, Mitchell EAD, Goslar T, Kamenik C (2009b) A near-annual palaeohydrological study based on testate amoebae from an Alpine mire: Surface wetness and the role of climate during the instrumental period. J Quat Sci 24:190–202.

    Google Scholar 

  • Lamentowicz M, Lamentowicz L, van der Knaap WO, Gąbka M, Mitchell EAD (2010) Contrasting species-environment relationships in communities of testate amoebae, bryophytes, and vascular plants along the fen-bog gradient. Microb Ecol 59:499–510. doi: 10.1007/s00248-009-9617-6.

    Google Scholar 

  • Lara E, Heger TJ, Mitchell EAD, Meisterfeld R, Ekelund F (2007) SSU rRNA reveals a sequential increase in shell complexity among the Euglyphid testate amoebae (Rhizaria: Euglyphida). Protist 158:229–237.

    CAS  Google Scholar 

  • Lara E, Heger TJ, Ekelund F, Lamentowicz M, Mitchell EAD (2008) Ribosomal RNA genes challenge the monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida). Protist 159:165–176.

    CAS  Google Scholar 

  • Le Roux G, Shotyk W (2006) Alteration of minerals in peat bogs. In P Martini, A Martinez-Cortizas (Eds), Peatlands: Evolution and Records of Environmental and Climatic Changes (vol. 9, 606p). Developments in Earth Surface Processes, Amsterdam: Elsevier.

    Google Scholar 

  • Le Roux G, Laverret E, Shotyk W (2006) Fate of minerals in ombrotrophic peat bogs. J Geol Soc Lond 163:641–646.

    Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: Changes in snow, ice and frozen ground. In S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (Eds), Climate Change 2007: The Physical Science Basis (pp. 337–384). Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press.

    Google Scholar 

  • Luoto M, Seppälä M (2003) Thermokarst ponds indicating former distribution of palsas in Finnish Lapland. Permafr Periglac Process 14:19–27.

    Google Scholar 

  • Luoto M, Fronzek S, Zuidhoff FS (2004) Spatial modelling of palsa mires in relation to climate in Northern Europe. Earth Surf Process Landforms 29:1373–1387.

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, et al. (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382.

    Google Scholar 

  • MacFarling Meure C, Etheridge D, Trudinger C, et al. (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33:L14810. doi: 10.1029/2006GL026152.

    Google Scholar 

  • Marx SK, McGowan HA, Kamber BS (2009) Long-range dust transport from eastern Australia: A proxy for Holocene aridity and ENSO-type climate variability. Earth Planet Sci Lett 282:167–177.

    CAS  Google Scholar 

  • Mattson S, Koutler-Andersson E (1954) Geochemistry of a raised bog. Kungl Lantbrushögskolans Annaler 21:321–366.

    CAS  Google Scholar 

  • Mauquoy D, Engelkes T, Groot MHM, Markesteijn F, Oudejans MG, van der Plicht J, van Geel B (2002a) High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeogr Palaeoclimatol Palaeoecol 186:275–310.

    Google Scholar 

  • Mauquoy D, van Geel B, Blaauw M, van der Plicht J (2002b) Evidence from North-west European bogs shows ‘Little Ice Age’ climatic changes driven by changes in solar activity. Holocene 12:1–6.

    Google Scholar 

  • Mauquoy D, van Geel B, Blaauw M, Speranza A, van der Plicht J (2004) Changes in solar activity and Holocene climate shifts derived from 14C wiggle-match dated peat deposits. Holocene 14:45–52.

    Google Scholar 

  • Mauquoy D, van Geel B (2007) Mire and peat macros. In SA Elias (Ed), Encyclopedia of Quaternary Science (vol. 3, pp. 2315–2336). Amsterdam: Elsevier.

    Google Scholar 

  • Mauquoy D, Yeloff D, van Geel B, Charman D, Blundell A (2008) Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene. J Quat Sci 23:745–763.

    Google Scholar 

  • Mazei YA, Tsyganov AN, Bubnova OA (2009) The species composition and community structure of testate amoebae in sphagnum bogs of northern Karelia (The White Sea Lowland). Zool J 88:1–12.

    Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Revi 23:771–801.

    Google Scholar 

  • McElwain JC, Mayle FE, Beerling DJ (2002) Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: A comparison with Antarctic ice core records. J Quat Sci 17:21–29.

    Google Scholar 

  • McLennan T (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:2000GC000109.

    Google Scholar 

  • McMullen JA, Barber KE, Johnson B (2004) A palaeoecological perspective of vegetation succession on raised bog microforms. Ecol Monogr 74:45–77.

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, et al. (2007) Global climate projections. In S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press.

    Google Scholar 

  • Meeker LD, Mayewski PA (2002) A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene 12:257–266.

    Google Scholar 

  • Meisterfeld R (2001a) Order Arcellinida, Kent 1880. In JJ Lee, GF Leedale, P Bradbury (Eds), The Illustrated Guide to the Protozoa (pp. 827–860). Lawrence: Allen Press.

    Google Scholar 

  • Meisterfeld R (2001b) Testate amoebae with filopoda. In JJ Lee, GF Leedale, P Bradbury (Eds), The Illustrated Guide to the Protozoa (pp. 1054–1084). Lawrence: Allen Press.

    Google Scholar 

  • Mitchell EAD, Buttler A, Warner BG, Gobat JM (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 6:565–576.

    Google Scholar 

  • Mitchell EAD, Borcard D, Buttler AJ, Grosvernier P, Gilbert D, Gobat JM (2000) Horizontal distribution patterns of Testate Amoebae (Protozoa) in Sphagnum magellanicum Carpet. Microb Ecol 39:290–300.

    Google Scholar 

  • Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization in an Arctic wet sedge tundra. Arct Antarct Alp Res 36:77–82.

    Google Scholar 

  • Mitchell E, Charman D, Warner B (2008a) Testate amoebae analysis in ecological and paleoecological studies of wetlands: Past, present and future. Biodivers Conserv 17:2115–2137.

    Google Scholar 

  • Mitchell EAD, Payne RJ, Lamentowicz M (2008b) Potential implications of differential preservation of testate amoebae shells for paleoenvironmental reconstruction in peatland. J Paleolimnol 40:603–618.

    Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, et al. (2001) Atmospheric CO2 concentrations over the Last Glacial termination 10.1126/science.291.5501.112. Science 291:112–114.

    CAS  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20.

    CAS  Google Scholar 

  • Morgan TJ, Herod AA, Brain SA, Chambers FM, Kandiyoti R (2005) Examination of soil contaminated by coal-liquids by size-exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracta from peat. J Chromatogr 1095:81–88.

    CAS  Google Scholar 

  • Muller J, Kylander M, Martinez-Cortizas A, Wuest RA:J, Weiss D, Blake K, Coles B, Garcia-Sanches R (2008) The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: Implications to paleoclimate. Geochim Cosmochim Acta 72:449–463.

    CAS  Google Scholar 

  • Muller S, Bobrov AA, Schirrmeister L, Andreev AA, Tarasov PE (2009) Testate amoebae record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene and Holocene environments in the Arctic Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 271:301–315.

    Google Scholar 

  • Myers-Smith IH, Harden JW, Wilmking M, Fuller CC, McGuire AD, Chapin III FS (2008) Wetland succession in a permafrost collapse: Interactions between fire and thermokarst. Biogeosciences 5:1273–1286.

    CAS  Google Scholar 

  • Neff JC, Ballantyne AP, Famer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds. RL (2008) Recent increase in eolian dust deposition related to human activity in the Western United States. Nat Geosci 1:189–195.

    CAS  Google Scholar 

  • Neftel A, Oeschger H, Staffelbach T, et al. (1988) CO2 record in the Byrd ice core 50,000–5000 years BP. Nature 331:609–611.

    Google Scholar 

  • Nichols JE, Booth RK, Jackson ST, Pendall EG, Huang Y (2006) Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Org Geochem 37:1505–1513.

    CAS  Google Scholar 

  • Nichols JE, Huang Y (2007) C23–C31 n-alkan-2-ones are biomarkers for the genus Sphagnum in freshwater peatlands. Org Geochem 38:1972–1976.

    CAS  Google Scholar 

  • Nichols JE, Walcott M, Bradley R, Pilcher J, Huang Y (2009) Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quat Res doi: 10.1016/j.yqres.2009.07.007.

    Google Scholar 

  • Nilssen D, Vorren KD (1991) Peat humification and climate history. Norsk Geologisk Tiddskrift 71:215–217.

    CAS  Google Scholar 

  • Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP (2000) n-Alkane distribution in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem 31:231–235.

    CAS  Google Scholar 

  • Oksanen PO (2002) Holocene permafrost dynamics in palsa and peat plateau mires of continental Europe. Licentiate thesis, University of Oulu, Finland.

    Google Scholar 

  • Oksanen PO (2005) Development of palsa mires on the northern European continent in relation to Holocene climatic and environmental changes. Doctoral thesis, University of Oulu, Finland

    Google Scholar 

  • Oldfield F, Thompson R, Crooks PRJ, Gedye SJ, Hall VA, Harkness DD, Housley RA, McCormac FG, Newton AJ, Pilcher JR, Renberg I, Richardson N (1997) Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyrân, northern Sweden. Holocene 7:283–290.

    Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–292.

    Google Scholar 

  • Painter TH, Barrett AP, Landry CC, Neff JC, Cassidy MP, Lawrence CR, Thatcher KP, Farmer. L (2007) Impact of disturbed desert soils on duration of mountain snowcover. Geophys Res Lett 34(12):L12502. 10.1029/2007GL030208.

    Google Scholar 

  • Pancost R, Baas M, van Geel B, Sinninghe Damste JS (2002) Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog. Org Geochem 33:675–690.

    CAS  Google Scholar 

  • Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geogr Ann Ser A Phys Geogr 89A:137–151.

    Google Scholar 

  • Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of sub-arctic peatland permafrost over the last 50 years. Geophys Res Lett 31:L18208.

    Google Scholar 

  • Payne RJ, Kishaba K, Blackford JJ, Mitchell EAD (2006) Ecology of testate amoebae (Protista) in south-central Alaska peatlands: Building transfer-function models for palaeoenvironmental studies. Holocene 16:403–414.

    Google Scholar 

  • Payne R, Mitchell EAD (2007) Ecology of testate amoebae from Mires in the Central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction. Protist 158:159–171.

    Google Scholar 

  • Payne RJ, Charman DJ, Matthews S, Eastwood WJ (2008) Testate amoebae as palaeohydrological proxies in Surmene Agacbasi Yaylasi peatland (Northeast Turkey). Wetlands 28:311–323.

    Google Scholar 

  • Payne RJ, Mitchell EAD (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495.

    Google Scholar 

  • Pellerin S, Lavoie C (2003) Reconstructing the recent dynamics of mires using a multitechnique approach. J Ecol 91:1008–1021.

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436.

    CAS  Google Scholar 

  • Pilcher JR, Hall VA, McCormac FG (1995) Dates of Holocene Icelandic volcanic eruptions from tephra layers in Irish peats. Holocene 5:103–110.

    Google Scholar 

  • Pissart A (2003) The remnants of Younger Dryas lithalsas in the Hautes Fagnes plateau in Belgium and elsewhere in the world. Geomorphology 52:5–38.

    Google Scholar 

  • Plunkett G, Swindles GT (2008) Determining the Sun’s influence on Lateglacial and Holocene climates: A focus on climate response to centennial-scale solar forcing at 2800 cal BP. Quat Sci Rev 27:175–184.

    Google Scholar 

  • Poole I, Weyers JDB, Lawson T, et al. (1996) Variations in stomatal density and index: Implications for palaeoclimatic reconstructions. Plant Cell Environ 19:705–712.

    Google Scholar 

  • Poole I, Lawson T, Weyers JDB, et al. (2000) Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa. New Phytol 145:511–521.

    Google Scholar 

  • Prentice IC, Harrison SP (2009) Ecosystem effects of CO2 concentration: Evidence from past climates. Clim Past 5:297–307.

    Google Scholar 

  • Raghoebarsing A, Smolders A, Schmid M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156.

    CAS  Google Scholar 

  • Räisänen J, Ruokolainen L (2006) Probabilistic forecasts of near-term climate change based on a resampling ensemble technique. Tellus 58A:461–472.

    Google Scholar 

  • Rebetez M, Reinhard M (2007) Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theor Appl Climatol 91:27–34.

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058.

    CAS  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Chang Biol 13:397–411.

    Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol 114:1–28.

    Google Scholar 

  • Rundgren M, Beerling D (1999) A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene 9:509–513.

    Google Scholar 

  • Rundgren M, Björck S (2003) Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth Planet Sci Lett 213:191–204.

    CAS  Google Scholar 

  • Saez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK (2003) Pseudo-cryptic speciation in coccolithophores. PNAS 100:7163–7168.

    CAS  Google Scholar 

  • Samaritani E, Siegenthaler A, Yli-Petäys M, Buttler A, Christin P-A, Mitchell EAD (2010) Seasonal net ecosystem carbon exchange of a regenerating cutover bog in the Swiss Jura Mountains. Restoration Ecol doi: 10.1111/j.1526-100X.2010.00662.X.

    Google Scholar 

  • Sannel ABK, Kuhry P (2009) Monitoring permafrost and thermokarst dynamics in a subarctic peat plateau complex in northern Sweden. In S Fronzek, et al. (Eds), Proceeding of the PALSALARM Symposium, Abisko, Sweden, 28–30 October 2008 (pp. 59–60).

    Google Scholar 

  • Sapkota A (2006) Mineralogical, Chemical, and Isotopic (Sr, Pb) Composition of Atmospheric Mineral Dusts in an Ombrotrophic Peat Bog, Southern South America (162p). Doctoral Thesis, University of Heidelberg.

    Google Scholar 

  • Saurer M, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Chang Biol 10:2109–2120.

    Google Scholar 

  • Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308.

    Google Scholar 

  • Scott EM (2007) Radiocarbon dating: Sources of error. In SA Elias (Ed), Encyclopedia of Quaternary Science (pp. 2918–2923). Oxford: Elsevier.

    Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ, et al. (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406.

    CAS  Google Scholar 

  • Seppä H, Hammarlund D, Antonsson K (2005) Low-frequency and highfrequency changes in temperature and effective humidity during the Holocene in south-central Sweden: Implications for atmospheric and oceanic forcings of climate. Clim Dyn 25:285–297.

    Google Scholar 

  • Seppälä M (1986) The origin of palsas. Geogr Ann Ser A Phys Geogr 68:141–147.

    Google Scholar 

  • Seppälä M (2003) Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52:141–148.

    Google Scholar 

  • Seppälä M (2005) Dating of palsas. Geol Surv Finl Spec Paper 40:79–84.

    Google Scholar 

  • Sernander R (1908) On the evidence of postglacial changes of climate furnished by the peat-mosses of northern Europe. Geol Fören I Stockh Förh 30:467–478.

    Google Scholar 

  • Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, van Der Knaap WO (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura mountains, Switzerland. Science 281:1635–1640.

    CAS  Google Scholar 

  • Shur YL, Jorgensen MT (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr Periglac Process 18:7–19.

    Google Scholar 

  • Siegenthaler U, Monnin E, Kawamura K, et al. (2005a) Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57:51–57.

    Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, et al. (2005b) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317.

    CAS  Google Scholar 

  • Sjögren P (2009) Sand mass accumulation rate as a proxy for wind regimes in the SW Barents Sea during the past 3 ka. Holocene 19(4):591–598.

    Google Scholar 

  • Smith AG, Pilcher JR (1973) Radiocarbon dates and vegetational history of the British Isles. New Phytol 72:903–914.

    Google Scholar 

  • Sollid JL, Sörbel L (1998) Palsa bogs as a climate indicator – Examples deom Dovrefjell, Southern Norway. Ambio 27(4):287–291.

    Google Scholar 

  • Speranza A, van der Plicht J, van Geel B (2000) Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quat Sci Rev 19:1589–1604.

    Google Scholar 

  • Speranza A, van Geel B, van der Plicht J (2002) Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence. Glob Planet Change 35:51–65.

    Google Scholar 

  • Ström L, Christensen TR (2007) Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol Biochem 39:1689–1698.

    Google Scholar 

  • Swindles GT, Blundell A, Roe HM, Hall VA (2010) A 4500-year proxy climate record from peatlands in the North of Ireland: The identification of widespread summer ‘drought phases’? Quat Sci Rev 29:1577–1589.

    Google Scholar 

  • Swindles GT, Plunkett G, Roe HM (2007) A delayed climatic response to solar forcing at 2800 cal BP: Multiproxy evidence from three Irish peatlands. Holocene 17:177–182.

    Google Scholar 

  • Sælthun NR, Barkved L (2003) Climate Change Scenarios for the SCANNET Region (74 pp). NIVA Report SNO 4663-2003.

    Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: But how badly? Quat Sci Rev 23:1–5.

    Google Scholar 

  • Thie J (1974) Properties of a wooded palsa in Northern Manitoba. Arct Alp Res 3(2):115–129.

    Google Scholar 

  • Todorov M, Golemanski V, Mitchell EAD, Heger TJ (2009) Morphology, biometry, and taxonomy of freshwater and marine interstitial cyphoderia (Cercozoa: Euglyphida). J Eukaryot Microbiol 56:279–289.

    Google Scholar 

  • Tolonen K, Warner BG, Vasander H (1994a) Ecology of Testaceans (Protozoa, Rhizopoda) in mires in Southern Finland: 2. Multivariate-analysis. Arch Protistenkunde 144:97–112.

    Google Scholar 

  • Tolonen K, Warner BG, Vasander H (1994b) Ecology of Testaceans (Protozoa: Rhizopoda) in mires in Southern Finland: II. Multivariate analysis. Arch Protistenkunde 144:97–112.

    Google Scholar 

  • Tricker P, Trewin H, Kull O, et al. (2005) Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143:652–660.

    Google Scholar 

  • Troels-Smith J (1955) Karakterisering af løse jordater. Characterisation of unconsolidated sediments. Danm Geol Unders Ser IV 3(10):73.

    Google Scholar 

  • Tuittila E-S, Komulainen VM, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–574.

    Google Scholar 

  • Turetsky MR, Kelman Wieder R, Vitt DH (2002) Boreal peatland fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912.

    CAS  Google Scholar 

  • Turetsky MR, Manning S, Wieder. RK (2004) Dating recent peat deposits. Wetlands 24:324–356.

    Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD (2007) The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes. Glob Chang Biol 13:1922–1934.

    Google Scholar 

  • Väliranta M, Korhola A, Seppä H, Tuittila E-S, Sarmaja-Korjonen K, Laine J, Alm J (2007) High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: A quantitative approach. Holocene 17:1093–1107.

    Google Scholar 

  • Vallée S, Payette S (2007) Collapse of permafrost mounds along a subarctic river over the last 100 years (northern Québec). Geomorphology 90:162–170.

    Google Scholar 

  • Van der Burgh J, Visscher H, Dilcher DL, et al. (1993) Paleoatmospheric signatures in Neogene fossil leaves. Science 260:1788–1790.

    Google Scholar 

  • Van der Linden M, Vickery E, Charman DJ, van Geel B (2008) Effects of human impact and climate change during the last 350 years recorded in a Swedish raised bog deposit. Palaeogeogr Palaeoclimatol Palaeoecol 262:1–31.

    Google Scholar 

  • Van der Putten N, Stieperaere H, Vervruggen C, Ochyra R (2004) Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. Holocene 14:382–392.

    Google Scholar 

  • Van Geel B, Mook WG (1989) High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31:151–155.

    Google Scholar 

  • Van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatic teleconnetctions around 2650 BP. J Quat Sci 11:451–460.

    Google Scholar 

  • Van Geel B, Heusser CJ, Renssen H, Schuurmans CJE (2000) Climatic change in Chile at around 2700 BP and global evidence for solar forcing: A hypothesis. Holocene 10:659–664.

    Google Scholar 

  • Van Hoof TB, Kaspers KA, Wagner F, et al. (2005) Atmospheric CO2 during the 13th century AD: Reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus Ser B Chem Phys Meteorol 57:351–355.

    Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC (1994) The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arct Alp Res 26:1–13.

    Google Scholar 

  • Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Can J Fish Aquat Sci 52:587–606.

    CAS  Google Scholar 

  • Von Post L, Sernander R (1910) Pflanzenphysiognomische Studien aus Torfmooren in Närke (48p). XI International Geological Congress, Excursion Guide No. 14, Stockholm.

    Google Scholar 

  • Von Post L, Granlund E (1926) Södra Sveriges torvtillganger. I. Sveriges. Geol Undersökn C335(19):1–128.

    Google Scholar 

  • Von Post L (1946) The prospect for pollen analysis in the study of the Earth’s climatic history. New Phytol 45:193–217.

    Google Scholar 

  • Waddington JM, Warner KD (2001) Atmospheric CO2 sequestration in restored mined peatlands. Ecoscience 8:359–368.

    Google Scholar 

  • Wagner F, Below R, De Klerk P, et al. (1996) A natural experiment on plant acclimation: Lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase. Proc Natl Acad Sci USA 93:11705–11708.

    CAS  Google Scholar 

  • Wagner F, Bohncke SJP, Dilcher DL, et al. (1999) Century-scale shifts in early Holocene atmospheric CO2 concentration. Science 284:1971–1973.

    CAS  Google Scholar 

  • Wagner F, Kouwenberg LLR, Van Hoof TB, et al. (2004) Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quat Sci Rev 23:1947–1954.

    Google Scholar 

  • Wagner F, Dilcher DL, Visscher H (2005) Stomatal frequency responses in a hardwood-swamp vegetation from Florida during a 60 years continuous CO2 increase. Am J Bot 92:690–695.

    Google Scholar 

  • Wall AAJ, Gilbert D, Magny M, Mitchell EAD (2010) Testate amoeba analysis of lake sediments: Impact of filter size and total count on estimates of density, diversity and community structure. J Paleolimnol 43:689–704.

    Google Scholar 

  • Walsh JE, Anisimov OA, Hagen JOM, Jakobsson T, Oerlemans J, Prowse TD, Romanovsky V, Savelieva N, Serreze M, Shiklomanov A, Shikomanov I, Solomon I, Arendt A, Atkinson D, Dermuth MN, Dowdeswell J, Dyurgerov M, Glazovsky A, Koerner RM, Meier M, Reeh N, Sigurdsson O, Steffen K, Truffer M (2005) Cryosphere and hydrology. In Arctic Climate Impact Assessment (pp. 183–242). Cambridge: Cambridge University Press.

    Google Scholar 

  • Warner BG (1987) Abundance and diversity of testate amoebae (Rhizopoda: Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Arch Protistenkd 133:173–189.

    Google Scholar 

  • Warner B, Asada T, Quinn N (2007) Seasonal influences on the ecology of testate amoebae (Protozoa) in a small/Sphagnum/peatland in Southern Ontario, Canada. Microb Ecol 54:91–100.

    Google Scholar 

  • Waterhouse JS, Switsur VR, Barker AC, et al. (2004) Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23:803–810.

    Google Scholar 

  • Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S, Martinez-Cortizas A (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim Cosmochim Acta 66:2307–2323. ISSN: 0016–7037.

    CAS  Google Scholar 

  • Wilkinson DM (2008) Testate amoebae and nutrient cycling: Peering into the black box of soil ecology. Trends Ecol Evol 23:596–599.

    Google Scholar 

  • Williams T, Flannagan L (1996) Effect of changes in water content on photosynthesis, transpiration and discrimination agains 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108:38–46.

    Google Scholar 

  • Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8:261–273.

    Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618.

    Google Scholar 

  • Woodward FI, Thompson GB, McKee IF (1991) How plants respond to climate change: Migration rates, individualism and the consequences for plant communities. Ann Bot 67:23–38.

    Google Scholar 

  • Woodward FI (2002) Potential impacts of global elevated CO2 concentrations on plants. Curr Opin Plant Biol 5:207–211.

    CAS  Google Scholar 

  • Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implications on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414. doi: 10.1029/2008WR006880.

    Google Scholar 

  • Wu H, Guiot J, Brewer S, et al. (2007) Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proc Natl Acad Sci 104:9720–9724.

    CAS  Google Scholar 

  • Xie S, Nott C, Avsejs L, Maddy D, Chambers F (2004) Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta 68:2849–2862.

    CAS  Google Scholar 

  • Yeloff D, Mauquoy D (2006) The influence of vegetation composition on peat humification: Implications for palaeoclimatic studies. Boreas 35:662–673.

    Google Scholar 

  • Yeloff D, Bennett KD, Blaauw M, Mauquoy D, Sillasoo Ü, van der Plicht J, van Geel B (2006) High precision C-14 dating of Holocene peat deposits: A comparison of Bayesian calibration and wiggle-matching approaches. Quat Geochronol 1:222–235.

    Google Scholar 

  • Yeloff D, Charman D, van Geel B, Mauquoy D (2007) Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils. Rev Palaeobot Palynol 146:102–145.

    Google Scholar 

  • Yi S, Woo M-K, Arain MA (2007) Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys Res Lett 34:L16504.

    Google Scholar 

  • Young JJ, Mehta S, Israelsson M, et al. (2006) CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506–7511.

    CAS  Google Scholar 

  • Yu Z, Campbell ID, Vitt DH, Apps MJ (2001) Modelling long-term peatland dynamics. I. Concepts, review, and proposed design. Ecol Model 145:197–210.

    Google Scholar 

  • Zoltai SC, Tarnocai C (1971) Properties of a wooded palsa in Northern Manitoba. Arct Alp Res 3(2):115–129.

    Google Scholar 

  • Zoltai SC (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada. Arct Alp Res 25(3):240–246.

    Google Scholar 

  • Zona D, Oechel WC, Kochendorfer J, Paw UKT, Salyuk AN, Olivas PC, Oberbauer SF, Lipson DA (2009) Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Glob Biogeochem Cycles 23. doi: 10.1029/2009GB003487.

    Google Scholar 

  • Zuidhoff F, Kolstrup E (2000) Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr Periglac Process 11:55–59.

    Google Scholar 

  • Zweifel R, Rigling A, Dobbertin M (2009) Species-specific stomatal response of trees to drought – A link to vegetation dynamics? J Veg Sci 20:442–454.

    Google Scholar 

Download references

Acknowledgments

WF is thankful to M. Gagen, D. McCarroll, F. Wagner-Cremer and H.H. Birks for discussions, to the Millennium Project (EU-FP6 contract 017008) and the AXA Research Fund for financial support. Funding to ML by the Foundation for Polish Science (FNP; Outgoing Fellowship KOLUMB) is acknowledged. Work by EADM and ES was funded by EU project RECIPE (n° EVK2-2002-00269). The Swiss part of RECIPE was funded by the State Secretariat for Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rixt de Jong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

de Jong, R. et al. (2010). Climate and Peatlands. In: Dodson, J. (eds) Changing Climates, Earth Systems and Society. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8716-4_5

Download citation

Publish with us

Policies and ethics