Skip to main content

Hierarchical Control of Terrestrial Vertebrate Taphonomy Over Space and Time: Discussion of Mechanisms and Implications for Vertebrate Paleobiology

  • Chapter
  • First Online:
Book cover Taphonomy

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

There is no doubt among paleontologists that the fossil record of terrestrial vertebrates is fragmented and unevenly distributed over space and time. The underlying causes of this patchiness derive from a combination of factors occurring before and after the deposition of vertebrate remains. Large-scale vertebrate fossil distribution patterns present challenges in addressing the effects of small-scale taphonomic processes on distribution patterns, and what, if any, effect they may have on biodiversity reconstructions. This chapter presents a hierarchical model connecting small-scale taphonomic processes and large-scale fossil preservation patterns. Factors acting at higher levels in the hierarchy constrain the range of taphonomic processes acting at lower levels, whereas lower level processes are responsible for determining vertebrate preservation and the resulting fossil record for an area. Secular changes in climate, tectonics, sea-level, etc. alter the distribution of both environments and biodiversity over time. These changes in turn may alter the congruence between standing biodiversity and the fraction of that diversity faithfully represented in the fossil record, skewing our understanding of extinct vertebrate ecosystems and their evolution over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paleogeographic Atlas Project at the University of Chicago (pgap.uchicago.edu) and the Paleomap Project at the University of Texas, Arlington (www.scotese.com).

References

  • Aerssens, J., Boonen, S., Lowet, G., et al. (1998). Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research. Endocrinology, 139, 663–670.

    Google Scholar 

  • Algeo, T. J., Scheckler, S. E., & Scott, A. C. (1998). Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events [and discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 113–130.

    Google Scholar 

  • Allen, A. P., Gillooly, J. F., & Brown, J. H. (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202–213.

    Google Scholar 

  • Allison, P. A., & Briggs, D. E. G. (1993). Paleolatitudinal sampling bias, phanerozoic species-diversity, and the end-permian extinction. Geology, 21, 65–68.

    Google Scholar 

  • Alroy, J. (2003). Global databases will yield reliable measures of global biodiversity. Paleobiology, 29, 26–29.

    Google Scholar 

  • Anderson, G. S., & Hobischak, N. R. (2004). Decomposition of carrion in the marine environment in British Columbia, Canada. International Journal of Legal Medicine, 118, 206–209.

    Google Scholar 

  • Anderson, J. M., Anderson, H. M., & Cruickshank, A. R. I. (1998). Late Triassic ecosystems of the Molteno Lower Elliot biome of southern Africa. Palaeontology, 41, 387–421.

    Google Scholar 

  • Andrews, P. (1995). Experiments in taphonomy. Journal of Archaeological Science, 22, 147–153.

    Google Scholar 

  • Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man, 20, 675–691.

    Google Scholar 

  • Andrews, M. Y., Ague, J. J., & Berner, R. A. (2006). Trees and weathering: Using soil petrographic and chemical analyses to compare the relative weathering effects of gymnosperms and angiosperms in the Cascade Mountains of Washington State, USA. Eos: Transactions of American Geophysical Union 87: Fall Meeting supplementary, abstract V53D–1787.

    Google Scholar 

  • Arche, A., & Lopez-Gomez, J. (2006). Late Permian to Early Triassic transition in central and NE Spain: Biotic and sedimentary characteristics. Geological Society of London, Special Publication, 265, 261–280.

    Google Scholar 

  • Arias, J. L., & Fernandez, M. S. (2001). Role of extracellular matrix molecules in shell formation and structure. World Poultry Sciences Journal, 57, 349–357.

    Google Scholar 

  • Armstrong, H. A., Pearson, D. G., & Griselin, M. (2001). Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements. Geochimica et Cosmochimica Acta, 65, 435–441.

    Google Scholar 

  • Badgley, C., & Gingerich, P. D. (1988). Sampling and faunal turnover in Early Eocene mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 141–157.

    Google Scholar 

  • Balog, A., Haas, J., Read, J. F., et al. (1997). Shallow marine record of orbitally forced cycli­city in a late Triassic carbonate platform, Hungary. Journal of Sedimentary Research, 67, 661–675.

    Google Scholar 

  • Bao, H. M., Koch, P. L., & Hepple, R. P. (1998). Hematite and calcite coatings on fossil vertebrates. Journal of Sedimentary Research, 68, 727–738.

    Google Scholar 

  • Barabesi, C., Galizzi, A., Mastromei, G., et al. (2007). Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. Journal of Bacteriology, 189, 228–235.

    Google Scholar 

  • Barnes, R. S. K., & Mann, K. H. (1991). Fundamentals of aquatic ecology. Oxford: Blackwell.

    Google Scholar 

  • Barnosky, A. & Carrasco, M. (2000). MIOMAP: a GIS-linked database for assessing effects of environmental perturbations on mammal evolution and biogeography. Journal of Vertebrate Paleontology, 20, 3 suppl., 28A.

    Google Scholar 

  • Barnosky, A. D., Hadly, E. A., & Bell, C. J. (2003). Mammalian response to global warming on varied temporal scales. Journal of Mammalogy, 84, 354–368.

    Google Scholar 

  • Barnosky, A. D., Carrasco, M. A., & Davis, E. B. (2005). The impact of the species-area relationship on estimates of paleodiversity. PLoS Biology, 3, e266.

    Google Scholar 

  • Barreto, C., Albrecht, R. M., Bjorling, D. E., et al. (1993). Evidence of the growth-plate and the growth of long bones in juvenile dinosaurs. Science, 262, 2020–2023.

    Google Scholar 

  • Bateman, R. M., Crane, P. R., DiMichele, W. A., et al. (1998). Early evolution of land plants: Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics, 29, 263.

    Google Scholar 

  • Battin, T. J., & Sengschmitt, D. (1999). Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microbial Ecology, 37, 185–196.

    Google Scholar 

  • Baveye, P., Vandevivere, P., Hoyle, B. L., et al. (1998). Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Critical Reviews in Environmental Sciences and Technology, 28, 123–191.

    Google Scholar 

  • Begon, M., Townshend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems. Malden: Blackwell.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.

    Google Scholar 

  • Behrensmeyer, A. K. (1988). Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 183–199.

    Google Scholar 

  • Behrensmeyer, A. K., & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic modes. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, et al. (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals. Chicago: University of Chicago Press.

    Google Scholar 

  • Behrensmeyer, A. K., Todd, N. E., Potts, R., et al. (1997). Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science, 278, 1589–1594.

    Google Scholar 

  • Behrensmeyer, A. K., Kidwell, S. M., & Gastaldo, R. A. (2000). Taphonomy and paleobiology. In: Erwin DH, Wing SL, editors. Deep Time: Paleobiology’s Perspective. Paleobiology, 26, 4 suppl., 103–147.

    Google Scholar 

  • Behrensmeyer, A. K., Stayton, C. T., & Chapman, R. E. (2003). Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology, 29, 52–70.

    Google Scholar 

  • Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82, 129–140.

    Google Scholar 

  • Benison, K. C., Goldstein, R. H., Wopenka, B., et al. (1998). Extremely acid Permian lakes and ground waters in North America. Nature, 392, 911–914.

    Google Scholar 

  • Benton, M. J. (1985). Patterns in the diversification of Mesozoic nonmarine tetrapods and problems in historical diversity analysis. Special Papers in Palaeontology, 33, 185–202.

    Google Scholar 

  • Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: The recrystallization window. Journal of Archaeological Science, 31, 867–882.

    Google Scholar 

  • Berner, R. A. (1968). Calcium carbonate concretions formed by the decomposition of organic matter. Science, 159, 195–197.

    Google Scholar 

  • Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.

    Google Scholar 

  • Berner, E. K., Berner, R. A., & Moulton, K. L. (2004). Plants and mineral weathering: Present and past. In J. I. Drever (Ed.), Treatise on geochemistry (Vol. 5). New York: Elsevier.

    Google Scholar 

  • Bigi, A., Cojazzi, G., Panzavolta, S., et al. (1997). Chemical and structural characterization of the mineral phase from cortical and trabecular bone. Journal of Inorganic Biochemistry, 68, 45–51.

    Google Scholar 

  • Blum, M. D., & Tornqvist, T. E. (2000). Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology, 47, 2–48.

    Google Scholar 

  • Boaz, N. T., & Behrensmeyer, A. K. (1976). Hominid taphonomy – Transport of human skeletal parts in an artificial fluviatile environment. American Journal of Physical Anthropology, 45, 53–60.

    Google Scholar 

  • Boddington, A. (1987). Chaos, disturbance and decay in an Anglo-Saxon cemetery. In A. Boddington, A. N. Garland, & R. C. Janaway (Eds.), Death, decay and reconstruction. Manchester: Manchester University Press.

    Google Scholar 

  • Bown, T. M., & Beard, K. C. (1990). Systematic lateral variation in the distribution of fossil mammals in alluvial paleosols, Lower Eocene Willwood Formation, Wyoming. Geological Society of America Special Paper, 243, 135–151.

    Google Scholar 

  • Bown, T. M., & Kraus, M. J. (1981). Vertebrate fossil-bearing paleosol units (Willwood Formation, Lower Eocene, Northwest Wyoming, USA) – Implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 34, 31–56.

    Google Scholar 

  • Brady, N. C. (1974). The nature and properties of soils. New York: Macmillan.

    Google Scholar 

  • Brain, C. K. (1995). The influence of climatic changes on the completeness of the early hominid record in southern African caves, with particular reference to Swartkrans. In E. S. Vrba, G. H. Denton, T. C. Partridge, et al. (Eds.), Paleoclimate and evolution, with emphasis on human origins. New Haven: Yale University Press.

    Google Scholar 

  • Briggs, D. E. G., & Kear, A. J. (1993). Fossilization of soft tissue in the laboratory. Science, 259, 1439–1442.

    Google Scholar 

  • Bush, A. M., & Bambach, R. K. (2004). Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology, 112, 625–642.

    Google Scholar 

  • Butterfield, N. J., & Nicholas, C. J. (1996). Burgess Shale-type preservation of both non-­mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, Northwestern Canada. Journal of Paleontology, 70, 893–899.

    Google Scholar 

  • Carney, K. M., Hungate, B. A., Drake, B. G., et al. (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences of the United States of America, 104, 4990–4995.

    Google Scholar 

  • Carpenter, K. (2005). Experimental investigation of the role of bacteria in bone fossilization. Neues Jahrbuch für Geologie und Paläontologie–Monatshefte, 2, 83–94.

    Google Scholar 

  • Carvalho, M. L., Marques, A. F., Lima, M. T., et al. (2004). Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1251–1257.

    Google Scholar 

  • Channing, A., Schweitzer, M. H., Horner, J. R., et al. (2005). A silicified bird from Quaternary hot spring deposits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 272, 905–911.

    Google Scholar 

  • Child, A. M. (1995). Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science, 22, 165–174.

    Google Scholar 

  • Chin, K., Eberth, D. A., Schweitzer, M. H., et al. (2003). Remarkable preservation of undigested muscle-tissue within a late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios, 18, 286–294.

    Google Scholar 

  • Chinsamy-Turan, A. (2005). The microstructure of dinosaur bone: Deciphering biology with fine-scale techniques. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Chown, S. L., & Gaston, K. J. (2000). Areas, cradles and museums: The latitudinal gradient in species richness. Trends in Ecology and Evolution, 15, 311–315.

    Google Scholar 

  • Clack, J. A. (2007). Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology, 47, 510–523.

    Google Scholar 

  • Clarke, J. B. (2004). A mineralogical method to determine the cyclicity in the taphonomic and diagenetic history of fossilized bones. Lethaia, 37, 281–284.

    Google Scholar 

  • Clyde, W. C., Finarelli, J. A., & Christensen, K. E. (2005). Evaluating the relationship between pedofacies and faunal composition: Implications for faunal turnover at the Paleocene-Eocene boundary. Palaios, 20, 390–399.

    Google Scholar 

  • Coard, R. (1999). One bone, two bones, wet bones, dry bones: Transport potentials under experimental conditions. Journal of Archaeological Science, 26, 1369–1375.

    Google Scholar 

  • Coard, R., & Dennell, R. W. (1995). Taphonomy of some articulated skeletal remains: transport potential in an artificial environment. Journal of Archaeological Science, 22, 441–448.

    Google Scholar 

  • Coates, M. I., Ruta, M., & Friedman, M. (2008). Ever since owen: Changing perspectives on the early evolution of tetrapods. Annual Review of Ecology, Evolution and Systematics, 39, 571–592.

    Google Scholar 

  • Collins, M. J., Riley, M. S., Child, A. M., et al. (1995). A basic mathematical simulation of the chemical degradation of ancient collagen. Journal of Archaeological Science, 22, 175–183.

    Google Scholar 

  • Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., et al. (2002). The survival of organic matter in bone: A review. Archaeometry, 44, 383–394.

    Google Scholar 

  • Crame, J. A. (2002). Evolution of taxonomic diversity gradients in the marine realm: A comparison of Late Jurassic and Recent bivalve faunas. Paleobiology, 28, 184–207.

    Google Scholar 

  • Crane, P. R., & Lidgard, S. (1989). Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science, 246, 675–678.

    Google Scholar 

  • Cressler, W. L. (2006). Plant palaeoecology of the late Devonian red hill locality, north central Pennsylvania, and Archaeopteris-dominated wetland plant community and early tetrapod site. In S. F. Greb and W. A. DiMichele (Eds.), Wetlands through time. Geological Society of America, Special Papers 399.

    Google Scholar 

  • Cubasch, U., Zorita, E., Kaspar, F., et al. (2006). Simulation of the role of solar and orbital forcing on climate. Advances in Space Research, 37, 1629–1634.

    Google Scholar 

  • Cutler, A. H., Behrensmeyer, A. K., & Chapman, R. E. (1999). Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 359–372.

    Google Scholar 

  • Daeschler, E. B., Shubin, N. H., & Jenkins, F. A., Jr. (2006). A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440, 757–763.

    Google Scholar 

  • Dal Sasso, C., & Signore, M. (1998). Exceptional soft-tissue preservation in a theropod dinosaur from Italy. Nature, 392, 383–387.

    Google Scholar 

  • Daniel, J. (2003). The role of bacterially mediated precipitation in the permineralization of bone. Masters thesis. University of Colorado, Boulder.

    Google Scholar 

  • Davies, D. J., Powell, E. N., & Stanton, R. J. (1989). Taphonomic signature as a function of environmental process – Shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 317–356.

    Google Scholar 

  • Davis, P. G. (1997). The bioerosion of bird bones. International Journal of Osteoarchaeology, 7, 388–401.

    Google Scholar 

  • de Carvalho, L. M. L., & Linhares, A. X. (2001). Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. Journal of Forensic Sciences, 46, 604–608.

    Google Scholar 

  • DiMichele, W. A., & Hook, R. W. (1992). Paleozoic terrestrial ecosystems. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, et al. (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals. Chicago: University of Chicago Press.

    Google Scholar 

  • Dirrigl, J., & Frank, J. (2001). Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science, 28, 817–832.

    Google Scholar 

  • Dolan, C. T., Brown, A. L., & Ritts, R. E. (1971). Microbiological examination of post mortem tissues. Archeology and Pathology, 92, 206–211.

    Google Scholar 

  • Donnadieu, Y., Godderis, Y., & Pierrehumbert, R. et al. (2006). A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry Geophysics Geosystems, 7, 1–21.

    Google Scholar 

  • Downing, K. F., & Park, L. E. (1998). Geochemistry and early diagenesis of mammal-bearing concretions from the Sucker Creek Formation (Miocene) of southeastern Oregon. Palaios, 13, 14–27.

    Google Scholar 

  • Dubiel, R. F., Parrish, J. T., Parrish, J. M., et al. (1991). The Pangaean megamonsoon: Evidence from the upper Triassic Chinle Formation, Colorado Plateau. Palaios, 6, 347–370.

    Google Scholar 

  • Dynesius, M., & Jansson, R. (2000). Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the United States of America, 97, 9115–9120.

    Google Scholar 

  • Einsele, G. (2000). Sedimentary basins: Evolution, facies, and sediment budget. New York: Springer.

    Google Scholar 

  • Elder, R. L. (1985). Principles of aquatic taphonomy with examples from the fossil record. PhD dissertation. University of Michigan, Ann Arbor.

    Google Scholar 

  • Elder, R. L., & Smith, G. R. (1988). Fish taphonomy and environmental inference in paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 577–592.

    Google Scholar 

  • Engelmann, G. F., Chure, D. J., & Fiorillo, A. R. (2004). The implications of a dry climate for the paleoecology of the fauna of the Upper Jurassic Morrison Formation. Sedimentary Geology, 167, 297–308.

    Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1956). A comparative histological study of fossil and recent bone tissues, Part I. Texas Journal of Science, 8, 405–443.

    Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1957). A comparative histological study of fossil and recent bone tissues, Part II. Texas Journal of Science, 9, 186–214.

    Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1958). A comparative histological study of fossil and recent bone tissues, Part III. Texas Journal of Science, 10, 187–230.

    Google Scholar 

  • Epstein, A. G., Epstein, J. P., & Harris, L. D. (1977). Conodont color alteration – An index to organic metamorphism. US Geological Survey, Professional Papers 995.

    Google Scholar 

  • Evans, K. L., Warren, P. H., & Gaston, K. J. (2005). Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Review, 80, 1–25.

    Google Scholar 

  • Fara, E. (2002). Sea-level variations and the quality of the continental fossil record. Journal of the Geological Society 159, 489–491.

    Google Scholar 

  • Fastovsky, D. E. (1987). Paleoenvironments of vertebrate-bearing strata during the Cretaceous-Paleogene transition, eastern Montana and western North Dakota. Palaios, 2, 282–295.

    Google Scholar 

  • Fastovsky, D. E. (1990). Rocks, resolution, and the record; a review of depositional constraints on fossil vertebrate assemblages at the terrestrial Cretaceous/Paleogene boundary, eastern Montana and western North Dakota. In V. L. Sharpton & P. D. Ward (Eds.), Global catastrophes in Earth history; an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America, Special Papers. Snowbird, Utah.

    Google Scholar 

  • Fastovsky, D. E., Badamgarav, D., Ishimoto, H., et al. (1997). The paleoenvironments of Tugrikin-Shireh (Gobi Desert, Mongolia) and aspects of the taphonomy and paleoecology of Protoceratops (Dinosauria: Ornithishichia). Palaios, 12, 59–70.

    Google Scholar 

  • Fenner, J. (2001). Palaeoceanographic and climatic changes during the Albian, summary of the results from the Kirchrode boreholes. Palaeogeography, Palaeoclimatology, Palaeoecology, 174, 287–304.

    Google Scholar 

  • Fernández-Jalvo, Y., Sánchez-Chillón, B., Andrews, P., et al. (2002). Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition. Archaeometry, 44, 353–361.

    Google Scholar 

  • Fiorillo, A. R. (1991). Prey bone utilization by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, 88, 157–166.

    Google Scholar 

  • Fiorillo, A. R. (1999). Determining the relative roles of climate and tectonics in the formation of the fossil record of terrestrial vertebrates: A perspective from the Late Cretaceous of western North America. Records of the Western Australian Museum Supplement, 57, 219–228.

    Google Scholar 

  • Flessa, K. W. (1975). Area, continental drift and mammalian diversity. Paleobiology, 1, 189–194.

    Google Scholar 

  • Freeman, J. J., Wopenka, B., Silva, M. J., et al. (2001). Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcified Tissue International, 68, 156–162.

    Google Scholar 

  • Gaines, R. R. (2008). Burgess Shale-type deposits worldwide share a common paleoenvironmental setting and origin. Geological Society of America, Abstract with Program, 40, 501.

    Google Scholar 

  • Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.

    Google Scholar 

  • Gibbs, S., Shackleton, N., & Young, J. (2004). Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Marine Micropaleontology, 51, 39–56.

    Google Scholar 

  • Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 304, 479–508.

    Google Scholar 

  • Goffredi, S. K., Orphan, V. J., Rouse, G. W., et al. (2005). Evolutionary innovation: A bone-eating marine symbiosis. Environmental Microbiology, 7, 1369–1378.

    Google Scholar 

  • Goodwin, M. B., Grant, P. G., Bench, G., et al. (2007). Elemental composition and diagenetic alteration of dinosaur bone: Distinguishing micron-scale spatial and compositional heterogeneity using PIXE. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 458–476.

    Google Scholar 

  • Graham, R. W., Lundelius, E. L., Graham, M. A., et al. (1996). Spatial response of mammals to Late Quaternary environmental fluctuations. Science, 272, 1601–1606.

    Google Scholar 

  • Greenwald, D. N., & Brubaker, L. B. (2001). A 5000-year record of disturbance and vegetation change in riparian forests of the Queets River, Washington, USA. Canadian Journal of Forest Research, 31, 1375–1385.

    Google Scholar 

  • Grynpas, M. D., & Omelon, S. (2007). Transient precursor strategy or very small biological apatite crystals? Bone, 41, 162–164.

    Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine, Science and the Law, 21, 243–265.

    Google Scholar 

  • Haefner, J., Wallace, J., & Merritt, R. (2004). Pig decomposition in lotic aquatic systems: The potential use of algal growth in establishing a postmortem submersion interval (PMSI). Journal of Forensic Sciences, 49, 330–336.

    Google Scholar 

  • Haglund, W. D., & Sorg, M. H. (2002). Human remains in water environments. In W. D. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy: Method, theory, and archaeological perspectives. Boca Raton: CRC Press.

    Google Scholar 

  • Hare, P. E. (1980). Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology. Chicago: University of Chicago Press.

    Google Scholar 

  • Haskell, J. (2001). The latitudinal gradient of diversity through the Holocene as recorded by fossil pollen in Europe. Evolutionary Ecology Research, 3, 345–360.

    Google Scholar 

  • Hawkins, B. A., Field, R., Cornell, H. V., et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.

    Google Scholar 

  • Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44, 319–328.

    Google Scholar 

  • Hedges, R. E. M., & Millard, A. R. (1995). Bones and groundwater: Towards the modelling of diagenetic processes. Journal of Archaeological Science, 22, 155–164.

    Google Scholar 

  • Hedges, R. E. M., Millard, A. R., & Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201–209.

    Google Scholar 

  • Henderson, J. (1987). Factors determining the preservation of human remains. In A. Boddington, A. N. Garland, & R. C. Janaway (Eds.), Death, decay, and reconstruction: Approaches to archaeology and forensic science. Manchester: Manchester University Press.

    Google Scholar 

  • Hewadikaram, K. A., & Goff, M. L. (1991). Effect of carcass size on rate of decomposition and arthropod succession patterns. The American Journal of Forensic Medicine and Pathology, 12, 235–240.

    Google Scholar 

  • Hobischak, N., & Anderson, G. (1999). Freshwater-related death investigations in British Columbia in 1995–1996. A review of coroners cases. Canadian Society of Forensic Science Journal, 32, 97–106.

    Google Scholar 

  • Hobischak, N. R., & Anderson, G. S. (2002). Time of submergence using aquatic invertebrate succession and decompositional changes. Journal of Forensic Sciences, 47, 142–151.

    Google Scholar 

  • Holz, M., & Schultz, C. L. (1998). Taphonomy of the south Brazilian Triassic herpetofauna: Fossilization mode and implications for morphological studies. Lethaia, 31, 335–345.

    Google Scholar 

  • Horner, J. R. (1989). The Mesozoic terrestrial ecosystems of Montana. In D. E. French & R. F. Grabb (Eds.), Geologic resources of Montana. Montana Geological Society field conference and symposium guidebook. Montana Geological Society, Billings.

    Google Scholar 

  • Horner, J. R., Varricchio, D. J., & Goodwin, M. B. (1992). Marine transgressions and the evolution of Cretaceous dinosaurs. Nature, 358, 59–61.

    Google Scholar 

  • Horner, J. R., De Ricqles, A., & Padian, K. (2000). Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrates Paleontology, 20, 115–129.

    Google Scholar 

  • Howe, J., & Francis, J. E. (2005). Metamorphosed palaeosols associated with Cretaceous fossil forests, Alexander Island, Antarctica. Journal of Geological Society, 162, 951–957.

    Google Scholar 

  • Huey, R. B., & Ward, P. D. (2005). Hypoxia, global warming, and terrestrial Late Permian extinctions. Science, 308, 398–401.

    Google Scholar 

  • Igamberdiev, A. U., & Lea, P. J. (2006). Land plants equilibrate O2 and CO2 concentrations in the atmosphere. Photosynthesis Research, 87, 177–194.

    Google Scholar 

  • Jackson, J. B. C., & Erwin, D. H. (2006). What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution, 21, 322–328.

    Google Scholar 

  • Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., et al. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31, 87–95.

    Google Scholar 

  • Johnsson, K. (1997). Chemical dating of bones based on diagenetic changes in bone apatite. Journal of Archaeological Science, 24, 431–437.

    Google Scholar 

  • Kaiser, T. M. (2000). Proposed fossil insect modification to fossil mammalian bone from Plio-Pleistocene hominid-bearing deposits of Laetoli (Northern Tanzania). Annals of the Entomological Society of America, 93, 693–700.

    Google Scholar 

  • Kellerman, G. D., Waterman, N. G., & Scharfenberger, L. F. (1976). Demonstration in vitro of post mortem bacterial migration. American Journal of Clinical Pathology, 66, 911–916.

    Google Scholar 

  • Kelly, E. F., Chadwick, O. A., & Hilinski, T. E. (1998). The effect of plants on mineral weathering. Biogeochemistry, 42, 21–53.

    Google Scholar 

  • Kerbis Peterhans, J. C., Wrangham, R. W., Carter, M. L., et al. (1993). A contribution to tropical rain forest taphonomy: Retrieval and documentation of chimpanzee remains from Kibale Forest, Uganda. Journal of Human Evolution, 25, 485–514.

    Google Scholar 

  • Kidwell, S. M. (1986). Models for fossil concentrations: Paleobiologic implications. Paleobiology, 12, 6–24.

    Google Scholar 

  • Kiessling, W. (2002). Radiolarian diversity patterns in the latest Jurassic-earliest Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 179–206.

    Google Scholar 

  • Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 5925–5930.

    Google Scholar 

  • Lambert, J. B., Simpson, S. V., Buikstra, J. E., et al. (1983). Electron microprobe analysis of elemental distribution in excavated human femurs. American Journal of Physical Anthropology, 62, 409–423.

    Google Scholar 

  • Laskar, J., Robutel, P., Joutel, F., et al. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428, 261–285.

    Google Scholar 

  • Lehman, T. M. (1997). Late Campanian dinosaur biogeography in the Western Interior of the United States. In D. L. Wolberg et al. (Eds.), Dinofest international. Philadelphia: Philadelphia Academy of Natural Sciences.

    Google Scholar 

  • Leier, A. L., DeCelles, P. G., & Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33, 289–292.

    Google Scholar 

  • Leng, Q., & Yang, H. (2003). Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Progress in Natural Science, 13, 206–212.

    Google Scholar 

  • Lian, B., Hu, Q. N., Chen, J., et al. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta, 70, 5522–5535.

    Google Scholar 

  • Long, J. A., & Gordon, M. S. (2004). The greatest step in vertebrate history: A paleobiological review of the fish-tetrapod transition. Physiological and Biochemical Zoology, 77, 700–719.

    Google Scholar 

  • Loope, D. B., Dingus, L., Swisher, C. C. I., et al. (1998). Life and death in a Late Cretaceous dune field, Nemegt Basin, Mongolia. Geology, 26, 27–30.

    Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maas, M. C. (1985). Taphonomy of a Late Eocene microvertebrate locality, Wind River Basin, Wyoming (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 52, 123–142.

    Google Scholar 

  • Magne, D., Pilet, P., Weiss, P., et al. (2001). Fourier transform infrared microspectroscopic investigation of the maturation of nonstoichiometric apatites in mineralized tissues: A horse dentin study. Bone, 29, 547–552.

    Google Scholar 

  • Markwick, P. J. (1998). Crocodilian diversity in space and time: The role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology, 24, 470–497.

    Google Scholar 

  • Martill, D. M. (1988). Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31, 1–18.

    Google Scholar 

  • Martin, R. E. (1999). Taphonomy: A process approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, R. E. (2003). The fossil record of biodiversity: Nutrients, productivity, habitat area and differential preservation. Lethaia, 36, 179–193.

    Google Scholar 

  • Martin, R. E., Goldstein, S. T., & Patterson, R. T. (1999). Taphonomy as an environmental science. Palaeogeography, Palaeoclimatology and Palaeoecology, 149, vii–viii.

    Google Scholar 

  • Marui, Y., Chiba, S., Okuno, J., et al. (2004). Species-area curve for land snails on Kikai Island in geological time. Paleobiology, 30, 222–230.

    Google Scholar 

  • McKean, A., Brooks, B., Nelson, S., et al. (2007). The relationship of geothermal alteration and relict organics to the color of fossil bone. Journal of Veterinary Paleontology, 27, 116A.

    Google Scholar 

  • McNamara, M. E., Orr, P. J., Kearns, S. L., et al. (2006). High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians. Geology, 34, 641–644.

    Google Scholar 

  • Mellen, P., Lowry, M., & Micozzi, M. (1993). Experimental observations on adipocere formation. Journal of Forensic Sciences, 38, 91–3.

    Google Scholar 

  • Menczel, J., Posner, A. S., & Harper, R. A. (1965). Age changes in crystallinity of rat bone apatite. Israel Journal of Medical Sciences, 1, 251–252.

    Google Scholar 

  • Middleton, G. V. (Ed.). (2003). Encyclopedia of sediments and sedimentary rocks. New York: Springer.

    Google Scholar 

  • Miller, A. I. (2003). On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology, 29, 15–18.

    Google Scholar 

  • Miller, D. J., & Eriksson, K. A. (1999). Linked sequence development and global climate change: The Upper Mississippian record in the Appalachian basin. Geology, 27, 35–38.

    Google Scholar 

  • Minshall, G. W., Hitchcock, E., & Barnes, J. R. (1991). Decomposition of Rainbow Trout (Oncorhynchus mykiss) carcasses in a forest stream ecosystem inhabited only by nonanadromous fish populations. Canadian Journal of Fisheries and Aquatic Sciences, 48, 191–195.

    Google Scholar 

  • Montes, L., de Margerie, E., Castanet, J., et al. (2005). Relationship between bone growth rate and the thickness of calcified cartilage in the long bones of the Galloanserae (Aves). Journal of Anatomy, 206, 445–452.

    Google Scholar 

  • Munoz-Duran, J., & Van Valkenburgh, B. (2006). The Rancholabrean record of Carnivora: Taphonomic effect of body size, habitat breadth, and the preservation potential of caves. Palaios, 21, 424–430.

    Google Scholar 

  • Nicholson, R. A. (1996). Bone degradation, burial medium and species representation: Debunking the myths, an experiment-based approach. Journal of Archaeological Science, 23, 513–533.

    Google Scholar 

  • Nielsen-Marsh, C. M., & Hedges, R. E. M. (1997). Dissolution experiments on modern and diagenetically altered bone and the effect on the infrared splitting factor. Bulletin. Société Géologique de France, 168, 485–490.

    Google Scholar 

  • Nielsen-Marsh, C. M., Hedges, R. E. M., Mann, T., et al. (2000). A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochimica Acta, 365, 129–139.

    Google Scholar 

  • Nielsen-Marsh, C. M., Smith, C. I., Jans, M. M. E., et al. (2007). Bone diagenesis in the European Holocene II: Taphonomic and environmental considerations. Journal of Archaeological Science, 34, 1523–1531.

    Google Scholar 

  • Norman, D. B. (1987). A Mass-accumulation of vertebrates from the Lower Cretaceous of Nehden (Sauerland), West Germany. Proceedings of the Royal Society of London. Series B: Biological Sciences, 230, 215–255.

    Google Scholar 

  • Noth, S. (1998). Conodont color (CAI) versus microcrystalline and textural changes in Upper Triassic conodonts from Northwest Germany. Facies, 38, 165–173.

    Google Scholar 

  • Noto, C. R. (2009). The influence of post-burial environment and plant-bone interactions on vertebrate preservation: an experimental taphonomic study. PhD dissertation. Stony Brook University, pp. 238.

    Google Scholar 

  • O’Brien, T. G., & Kuehner, A. C. (2007). Waxing grave about adipocere: Soft tissue change in an aquatic context. Journal of Forensic Sciences, 52, 294–301.

    Google Scholar 

  • Olsen, P. E., Kent, D. V., & Cornet, B. (1991). Thirty million year record of tropical orbitally-forced climate change from continental coring of the Newark early Mesozoic rift basin. American Geophysics Union – Miner Society of America 1991 Spring Meeting, Baltimore 72.

    Google Scholar 

  • Paik, I. S. (2000). Bone chip-filled burrows associated with bored dinosaur bone in floodplain paleosols of the Cretaceous Hasandong Formation, Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 213–225.

    Google Scholar 

  • Pasteris, J. D., Wopenka, B., Freeman, J. J., et al. (2004). Lack of OH in nanocrystalline apatite as a function of degree of atomic order: Implications for bone and biomaterials. Biomaterials, 25, 229–238.

    Google Scholar 

  • Pasteris, J. D., Wopenka, B., & Valsami-Jones, E. (2008). Bone and tooth mineralization: Why apatite? Elements, 4, 97–104.

    Google Scholar 

  • Pawlicki, R., & Bolechala, P. (1987). X-ray microanalysis of fossil dinosaur bone: Age differences in the calcium and phosphorus content of Gallimimus bullatus bones. Folia Histochemica et Cytobiologica, 25, 241.

    Google Scholar 

  • Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.

    Google Scholar 

  • Person, A., Bocherens, H., Saliège, J.-F., et al. (1995). Early diagenetic evolution of bone phosphate: An X-ray diffractometry analysis. Journal of Archaeological Science, 22, 211–221.

    Google Scholar 

  • Person, A., Bocherens, H., Mariotti, A., et al. (1996). Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 135–149.

    Google Scholar 

  • Pfennig, D. W., Rice, A. M., & Martin, R. A. (2007). Field and experimental evidence for competition’s role in phenotypic divergence. Evolution, 61, 257–271.

    Google Scholar 

  • Pfretzschner, H. U. (2000). Pyrite formation in Pleistocene bones – A case of very early mineral formation during diagenesis. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen, 217 143–160.

    Google Scholar 

  • Pfretzschner, H. U. (2001a). Iron oxides in fossil bone. Neues Jahrbuch fiir Geologie und Paläontologie–Abhandlungen, 220, 417–429.

    Google Scholar 

  • Pfretzschner, H. U. (2001b). Pyrite in fossil bone. Neues Jahrbuch fiir Geologie und Paläontologie– Abhandlungen, 220, 1–23.

    Google Scholar 

  • Pfretzschner, H. U. (2004). Fossilization of Haversion bone in aquatic environments. Comptes Rendus Palevol, 3, 605–616.

    Google Scholar 

  • Pfretzschner, H. U. (2006). Collagen gelatinization: The key to understand early bone-diagenesis. Paläontographica Abteilung A–Paläozoologie-Stratigraphie 278, 135–148.

    Google Scholar 

  • Piepenbrink, H. (1986). Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation. Journal of Archaeological Science, 13, 417–430.

    Google Scholar 

  • Pike, A. W. G., Nielsen-Marsh, C., & Hedges, R. E. M. (2001). Modelling bone dissolution under different hydrological regimes. In A. Millard (Ed.), Archaeological Sciences 1997. Durham: BAR International Series.

    Google Scholar 

  • Plotnick, R. E., Baumiller, T., & Wetmore, K. L. (1988). Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 27–43.

    Google Scholar 

  • Post, E., & Forchhammer, M. C. (2002). Synchronization of animal population dynamics by large-scale climate. Nature, 420, 168–171.

    Google Scholar 

  • Price, G. D., & Sellwood, B. W. (1997). “Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 315–327.

    Google Scholar 

  • Prothero, D. R., & Schwab, F. (1996). Sedimentary geology: An introduction to sedimentary rocks and stratigraphy. New York: WH Freeman and Company.

    Google Scholar 

  • Randall, D., Burggren, W., & French, K. (1997). Animal physiology: Mechanisms and adaptations. New York: WH Freeman and Company.

    Google Scholar 

  • Rees, P. M., Noto, C. R., Parrish, J. M., et al. (2004). Late Jurassic climates, vegetation, and dinosaur distributions. Journal of Geology, 112, 643–654.

    Google Scholar 

  • Rees, P. M. & Noto, C. R. (2005). A new online database of dinosaur distributions. Journal of Vertebrate Paleontology, 25, 3 suppl.,103A.

    Google Scholar 

  • Reich, P. B., Oleksyn, J., Modrzynski, J., et al. (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecological Letters, 8, 811–818.

    Google Scholar 

  • Reisz, R. R., & Tsuji, L. A. (2006). An articulated skeleton of Varanops with bite marks: the oldest known evidence of scavenging among terrestrial vertebrates. Journal of Vertebrate Paleontology, 26, 1021–1023.

    Google Scholar 

  • Retallack, G. J. (1990). Soils of the past: An introduction to paleopedology. Winchester: Unwin Hyman.

    Google Scholar 

  • Retallack, G. J. (1997). Early forest soils and their role in Devonian global change. Science, 276, 583–585.

    Google Scholar 

  • Retallack, G. J. (2005a). Earliest triassic claystone breccias and soil-erosion crisis. Journal of Sedimentary Research, 75, 679–695.

    Google Scholar 

  • Retallack, G. J. (2005b). Were fossils exceptionally preserved in unusual times? Geological Society of America, Abstract with Program, 37, 117.

    Google Scholar 

  • Retallack, G. J., Wynn, J. G., & Fremd, T. J. (2004). Glacial-interglacial-scale paleoclimatic change without large ice sheets in the Oligocene of central Oregon. Geology, 32, 297–300.

    Google Scholar 

  • Rey, C., Renugopalakrishman, V., Collins, B., et al. (1991). Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcified Tissue International, 49, 251–258.

    Google Scholar 

  • Rial, J. A. (2004). Abrupt climate change: Chaos and order at orbital and millennial scales. Global and Planetary Change, 41, 95–109.

    Google Scholar 

  • Roberts, E. M., Rogers, R. R., & Foreman, B. Z. (2007). Continental insect borings in dinosaur bone: Examples from the Late Cretaceous of Madagascar and Utah. Journal of Paleontology, 81, 201–208.

    Google Scholar 

  • Rogers, R. R. (1993). Systematic patterns of time-averaging in the terrestrial vertebrate record: A Cretaceous case study. In S. M. Kidwell & A. K. Behrensmeyer (Eds.), Taphonomic approaches to time resolution in fossil assemblages. Knoxville: The Paleontological Society.

    Google Scholar 

  • Rogers, R. R. (2005). Fine-grained debris flows and extraordinary vertebrate burials in the Late Cretaceous of Madagascar. Geology, 33, 297–300.

    Google Scholar 

  • Rogers, R. R., Arcucci, A. B., Abdala, F., et al. (2001). Paleoenvironment and taphonomy of the Chanares Formation tetrapod assemblage (Middle Triassic), northwestern Argentina: Spectacular preservation in volcanogenic concretions. Palaios, 16, 461–481.

    Google Scholar 

  • Rogers, R. R., Krause, D. W., & Rogers, K. C. (2003). Cannibalism in the Madagascan dinosaur Majungatholus atopus. Nature, 422, 515–518.

    Google Scholar 

  • Rohde, K. (1992). Latitudinal gradients in species-diversity – The search for the primary cause. Oikos, 65, 514–527.

    Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, Cambridge University Press, 436 p.

    Google Scholar 

  • Rothman, D. H. (2001). Global biodiversity and the ancient carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 98, 4305–4310.

    Google Scholar 

  • Rygel, M. C., Fielding, C. R., Frank, T. D., et al. (2008). The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis. Journal of Sedimentary Research, 78, 500–511.

    Google Scholar 

  • Sagemann, J., Bale, S. J., Briggs, D. E. G., et al. (1999). Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta, 63, 1083–1095.

    Google Scholar 

  • Sander, P. M. (1987). Taphonomy of the lower Permian Geraldine Bonebed in Archer County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 221–236.

    Google Scholar 

  • Sander, P. M. (1989). Early Permian depositional environments and pond bonebeds in central Archer County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 69, 1–21.

    Google Scholar 

  • Sansom, I. J., Smith, M. P., Armstrong, H. A., et al. (1992). Presence of the earliest vertebrate hard tissues in conodonts. Science, 256, 1308–1311.

    Google Scholar 

  • Schaetzl, R. J., & Anderson, S. (2005). Soils: Genesis and geomorphology. New York: Cambridge University Press.

    Google Scholar 

  • Scheckler, S. E., & Maynard, J. B. (2001). Effects of the middle to late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate. In P. G. Gensel & D. Edwards (Eds.), Plants invade the land: Evolutionary and environmental perspectives. New York: Columbia University Press.

    Google Scholar 

  • Schoeninger, M. J., Moore, K. M., Murray, M. L., et al. (1989). Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry, 4, 281–292.

    Google Scholar 

  • Schultze, H.-P., & Cloutier, R. (Eds.). (1996). Devonian fishes and plants of Miguasha, Quebec, Canada. Munich: Verlag Dr. Frederich Pfeil.

    Google Scholar 

  • Schweitzer, M. H., Wittmeyer, J. L., & Horner, J. R. (2005). Gender-specific reproductive tissue in ratites and Tyrannosaurus rex. Science, 308, 1456–1460.

    Google Scholar 

  • Schweitzer, M. H., Wittmeyer, J. L., & Horner, J. R. (2007). Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proceedings of the Royal Society of London. Series B: Biological Sciences, 274, 183–197.

    Google Scholar 

  • Scotese, C. (2009). The Paleomap Project. www.scotese.com. Accessed 30 January 2009.

  • Sellwood, B. W., & Valdes, P. J. (2006). Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190, 269–287.

    Google Scholar 

  • Sephton, M. A., Looy, C. V., Brinkhuis, H., et al. (2005). Catastrophic soil erosion during the end-Permian biotic crisis. Geology, 33, 941–944.

    Google Scholar 

  • Sepkoski, J. J. (1998). Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 315–326.

    Google Scholar 

  • Sept, J. M. (1994). Bone distribution in a semi-arid riverine habitat in eastern Zaire: Implications for the interpretation of faunal assemblages at early archaeological sites. Journal of Archaeological Science, 21, 217–235.

    Google Scholar 

  • Sereno, P. C. (1997). The origin and evolution of dinosaurs. Annual Review of Earth and Planetary Sciences, 25, 435–489.

    Google Scholar 

  • Shalaby, O. A., deCarvalho, L. M. L., & Goff, M. L. (2000). Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the island of Oahu, Hawaii. Journal of Forensic Sciences, 45, 1267–1273.

    Google Scholar 

  • Shean, B. S., Messinger, L., & Papworth, M. (1993). Observations of differential decomposition on sun exposed vs shaded pig carrion in coastal Washington State. Journal of Forensic Sciences, 38, 938–949.

    Google Scholar 

  • Sidor, C. A., O’Keefe, F. R., Damiani, R., et al. (2005). Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature, 434, 886–889.

    Google Scholar 

  • Silvertown, J. (1985). History of a latitudinal diversity gradient: Woody plants in Europe 13,000–1000 Years B.P. Journal of Biogeography, 12, 519–525.

    Google Scholar 

  • Simon-Coinçon, R., Thiry, M., & Schmitt, J.-M. (1997). Variety and relationships of weathering features along the early Tertiary palaeosurface in the southwestern French Massif Central and the nearby Aquitaine Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 51–79.

    Google Scholar 

  • Sionkowska, A. (2005). Thermal denaturation of UV-irradiated wet rat tail tendon collagen. International Journal of Biological Macromolecules, 35, 145–149.

    Google Scholar 

  • Smith, R. M. H. (1993). Vertebrate taphonomy of Late Permian floodplain deposits in the southwestern Karoo Basin of South Africa. Palaios, 8, 45–67.

    Google Scholar 

  • Smith, R. M. H., & Botha, J. (2005). The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction. Comptes Rendus Palevol, 4, 623–636.

    Google Scholar 

  • Smith, R. M. H., & Swart, R. (2002). Changing fluvial environments and vertebrate taphonomy in response to climatic drying in a mid-Triassic rift valley fill: The Omingonde Formation (Karoo Supergroup) of central Namibia. Palaios, 17, 249–267.

    Google Scholar 

  • Smith, A. B., Gale, A. S., & Monks, N. E. A. (2001). Sea-level change and rock-record bias in the Cretaceous: A problem for extinction and biodiversity studies. Paleobiology, 27, 241–253.

    Google Scholar 

  • Smoke, N. D., & Stahl, P. W. (2004). Post-burial fragmentation of microvertebrate skeletons. Journal of Archaeological Science, 31, 1093–1100.

    Google Scholar 

  • Spencer, L. M., Van Valkenburgh, B., & Harris, J. M. (2003). Taphonomic analysis of large mammals recovered from the Pleistocene Rancho La Brea tar seeps. Paleobiology, 29, 561–575.

    Google Scholar 

  • Stehli, F. G., Douglas, R. G., & Newell, N. D. (1969). Generation and maintenance of gradients in taxonomic diversity. Science, 164, 947–949.

    Google Scholar 

  • Stone, L., Dayan, T., & Simberloff, D. (1996). Community-wide assembly patterns unmasked: The importance of species’ differing geographical ranges. The American Naturalist, 148, 997–1015.

    Google Scholar 

  • Storch, D., Evans, K. L., & Gaston, K. J. (2005). The species-area-energy relationship. Ecological Letters, 8, 487–492.

    Google Scholar 

  • Symmons, R. (2005). New density data for unfused and fused sheep bones, and a preliminary discussion on the modelling of taphonomic bias in archaeofaunal age profiles. Journal of Archaeological Science, 32, 1691–1698.

    Google Scholar 

  • Tappen, M. (1994). Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21, 667–673.

    Google Scholar 

  • Termine, J. D., Wuthier, R. E., & Posner, A. S. (1967). Amorphous-crystalline mineral changes during endochondral and periosteal bone formation. Proceedings of the Society for Experimental Biology Medicine, 125, 4–9.

    Google Scholar 

  • Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44, 371–382.

    Google Scholar 

  • Trueman, C. N., & Tuross, N. (2002). Trace elements in recent and fossil bone apatite. In M. J. Kohn, J. Rakovan, & J. M. Hughes (Eds.), Phosphates: Geochemical, geobiological and materials importance. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, Washington, DC.

    Google Scholar 

  • Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., et al. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721–739.

    Google Scholar 

  • Tucker, M. E. (1991). The diagenesis of fossils. In S. K. Donovan (Ed.), The processes of fossilization. New York: Columbia University Press.

    Google Scholar 

  • Upchurch, G. R., Otto-Bliesner, B. L., & Scotese, C. R. (1999). Terrestrial vegetation and its effects on climate during the latest Cretaceous. Geological Society of America Special Paper, 332, 407–426.

    Google Scholar 

  • Van der Zwan, C. J. (2002). The impact of Milankovitch-scale climatic forcing on sediment supply. Sedimentary Geology, 147, 271–294.

    Google Scholar 

  • Van Valkenburgh, B., & Molnar, R. E. (2002). Dinosaurian and mammalian predators compared. Paleobiology, 28, 527–543.

    Google Scholar 

  • Vandevivere, P., & Baveye, P. (1992). Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Applied and Environmental Microbiology, 58, 1690–1698.

    Google Scholar 

  • Von Endt, D. W., & Ortner, D. J. (1984). Experimental effects of bone size and temperature on bone diagenesis. Journal of Archaeological Science, 11, 247–253.

    Google Scholar 

  • Voorhies, M. R. (1969). Taphonomy and population dynamics of an Early Pliocene vertebrate fauna, Knox County. Nebraska: University of Wyoming.

    Google Scholar 

  • Walker, S. E., & Goldstein, S. T. (1999). Taphonomic tiering: Experimental field taphonomy of molluscs and foraminifera above and below the sediment-water interface. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 227–244.

    Google Scholar 

  • Ward, P., Labandeira, C., Laurin, M., et al. (2006). Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences of the United States of America, 103, 16818–16822.

    Google Scholar 

  • Watson, J., & Alvin, K. L. (1996). An English Wealden floral list, with comments on possible environmental indicators. Cretaceous Research, 17, 5–26.

    Google Scholar 

  • Weigelt, J. (1989). Recent vertebrate carcasses and their paleobiological implications. Chicago: University of Chicago Press.

    Google Scholar 

  • Weiner, S., & Price, P. (1986). Disaggregation of bone into crystals. Calcified Tissue International, 39, 365–375.

    Google Scholar 

  • Weiner, S., & Traub, W. (1992). Bone structure: From angstroms to microns. The FASEB Journal, 6, 879–885.

    Google Scholar 

  • Weiner, S., & Wagner, H. D. (1998). The material bone: Structure–mechanical function relations. Annual Review of Materials Science, 28, 271–298.

    Google Scholar 

  • Wendler, J., Graefe, K.-U., & Willems, H. (2002). Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 19–41.

    Google Scholar 

  • White, E. M., & Hannus, L. A. (1983). Chemical weathering of bone in archaeological soils. American Antiquity, 48, 316–322.

    Google Scholar 

  • Wilborn, B. (2007). Deformation of dinosaur bones: Diagenetic and tectonic effects. Journal of Veterinary Paleontology, 27, 166A.

    Google Scholar 

  • Williams, C. T., & Potts, P. J. (1988). Element distribution maps in fossil bones. Archaeometry, 30, 237–247.

    Google Scholar 

  • Wings, O. (2004). Authigenic minerals in fossil bones from the Mesozoic of England: Poor correlation with depositional environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 15–32.

    Google Scholar 

  • Winkler, D. A. (1983). Paleoecology of an Early Eocene Mammalian Fauna from Paleosols in the Clarks Fork Basin, Northwestern Wyoming (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 261–298.

    Google Scholar 

  • Wolfe, D. J., & Kirkland, J. I. (1998). Zuniceratops chritopheri nov. gen & nov. sp., a ceratopsian dinosaur from the Moreno Hill Formation (Cretaceous, Turonian) of west-Central New Mexico. New Mexico Museum of Natural History and Science Bulletin, 14, 303–317.

    Google Scholar 

  • Wood, J. M., Thomas, R. G., & Visser, J. (1988). Fluvial processes and vertebrate taphonomy: The Upper Cretaceous Judith River Formation, south-central Dinosaur Provincial Park, Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 66, 127–143.

    Google Scholar 

  • Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 25, 131–143.

    Google Scholar 

  • Wright, V. P., & Vanstone, S. D. (2001). Onset of Late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: A synthesis of current understanding. Journal of Geological Society, 158, 579–582.

    Google Scholar 

  • Wright, S., Keeling, J., & Gillman, L. (2006). The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proceedings of the National Academy of Sciences of the United States of America, 103, 7718–7722.

    Google Scholar 

  • Yang, W., Harmsen, F., & Kominz, M. A. (1996). Quantitative analysis of a cyclic peritidal carbonate sequence, the Middle and Upper Devonian Lost Burro Formation, Death Valley, California – A possible record of Milankovitch climatic cycles. Journal of Sedimentary Research Section B: Stratigraphy and Global Studies, 65, 306–322.

    Google Scholar 

  • Yoshino, M., Kimijima, T., Miyasaka, S., et al. (1991). Microscopical study on estimation of time since death in skeletal remains. Forensic Science International, 49, 143–158.

    Google Scholar 

  • Zazzo, A., Lécuyer, C., & Mariotti, A. (2004). Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta, 68, 1–12.

    Google Scholar 

  • Zhou, Z. G. (2006). Evolutionary radiation of the Jehol Biota: Chronological and ecological perspectives. Geological Journal, 41, 377–393.

    Google Scholar 

  • Zhou, Z. H., Barrett, P. M., & Hilton, J. (2003). An exceptionally preserved Lower Cretaceous ecosystem. Nature, 421, 807–814.

    Google Scholar 

  • Ziegler, A. M., Eshel, G., Rees, P. M., et al. (2003). Tracing the tropics across land and sea: Permian to present. Lethaia, 36, 227–254.

    Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Alfred M. Ziegler (University of Chicago, retired), who inspired me to think about big problems at big scales and helped me develop the scholarly tools to approach them. This chapter owes its existence to the intellectual heritage he instilled in me as a lowly undergraduate working in his lab many years ago. Working for Fred opened the opportunity to work with David Weishampel (Johns Hopkins University), who deserves credit for letting me get my hands on the Dinosauria distribution data, which helped get me interested in the factors behind fossil distribution patterns. I would like to thank Bob Gastaldo (Colby College) for detailed comments and criticisms on an early draft of the manuscript and to Catherine Forster (The George Washington University), who further helped shape this mass of ideas into a coherent whole through multiple drafts. Thanks also go to Kay Behrensmeyer (Smithsonian), Tony Fiorillo (Dallas Museum of Nature and Science), Louis Jacobs (Southern Methodist University), and Ray Rogers (Macalester College) for many fruitful discussions and encouragement. I am grateful to David Bottjer and Peter Allison for the opportunity to contribute to this book. Special thanks go to my family and Summer Ostrowski for their continued support in all my endeavors, paleontological and otherwise, throughout the years. Paleogeographic and paleoclimate maps produced by the Paleogeographic Atlas Project (pgap.uchicago.edu), The Paleomap Project (www.scotese.com), and Ron Blakey (jan.ucc.nau.edu/∼rcb7/RCB.html) proved invaluable in the preparation of this manuscript. Some of the symbols used in Fig. 8.2 are courtesy of the Integration and Application Network (ian.umces.edu/symbols/), University of Maryland Center for Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Noto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Noto, C.R. (2011). Hierarchical Control of Terrestrial Vertebrate Taphonomy Over Space and Time: Discussion of Mechanisms and Implications for Vertebrate Paleobiology. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_8

Download citation

Publish with us

Policies and ethics