Skip to main content

Taphonomy in Temporally Unique Settings: An Environmental Traverse in Search of the Earliest Life on Earth

  • Chapter
  • First Online:
Book cover Taphonomy

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

There is an apparent preservational paradox in the early rock record. Cellularly preserved and ensheathed microfossils which are remarkably preserved from the late Archaean (c.2700 Ma) onward, have rarely been found in the earlier rock record and when they are their biogenicity is debated. Likewise, the abundance and morphological complexity of stromatolites appears much reduced in the early Archaean and even these lack compelling associations with organic remains of microbial mats. This ‘preservational dark age’ may have arisen because microfossils and microbial mats were absent, because conditions for their preservation were rare or, as we suggest here, because scientists have largely been looking in the wrong places.

To illustrate the potential of looking far beyond ‘chertified Bahamian lagoons’, we make a traverse across the key potential habitats for early life on Earth and identify some exciting and new taphonomic windows, in the search for Earth’s earliest microfossils, trace fossils and stromatolites. Such habitats include hitherto little explored pillow lavas, hydrothermal vents and beach sandstones. These new windows are already starting to provide surprising insights into the nature of the earliest vital processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., & Burch, I. W. (2006). Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718.

    Article  Google Scholar 

  • Allwood, A. C., Grotzinger, J. P., Knoll, A. H., Burch, I. W., Anderson, M. S., Coleman, M. L., et al. (2009). Controls on development and diversity of Early Archean stromatolites. PNAS, 106, 9548–9555.

    Article  Google Scholar 

  • Altermann, W., & Kazmierczak, J. (2003). Archaean microfossils: A reappraisal of early life on Earth. Research in Microbiology, 154, 611–617.

    Article  Google Scholar 

  • Anhaeusser, C. R. (1973). The evolution of the early Precambrian crust of South Africa. Philosophical Transactions of the Royal Society, London, A273, 359–388.

    Google Scholar 

  • Armstrong, R. A., Compston, W., de Wit, M. J., & Williams, L. S. (1990). The stratigraphy of the 3.5–3.2 Ga Barberton Greenstone Belt revisited: A single zircon ion microprobe study. Earth and Planetary Science Letters, 101, 90–106.

    Article  Google Scholar 

  • Awramik, S. M. (1992). The oldest records of photosynthesis. Photosynthesis Research, 33, 75–89.

    Article  Google Scholar 

  • Awramik, S. M., Schopf, J. W., & Walter, M. R. (1983). Filamentous Fossil Bacteria from the Archaean of Western Australia. Precambrian Research, 20, 357–374.

    Article  Google Scholar 

  • Bacon, F. (1620). Novo Organum. London.

    Google Scholar 

  • Baker, R. T. K., & Harris, P. S. (1978). The formation of filamentous carbon. In P. L. Walker & P. A. Thrower (Eds.), Chemistry and physics of carbon (pp. 2–165). New York: Dekker.

    Google Scholar 

  • Banerjee, N. R., Furnes, H., Muehlenbachs, K., Staudigel, H., & de Wit, M. (2006). Preservation of 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters, 241, 707–722.

    Article  Google Scholar 

  • Banerjee, N. R., Simonetti, A. S., Furnes, H., Muehlenbachs, K., Staudigel, H., Heaman, L., et al. (2007). Direct dating of Archean microbial ichnofossils. Geology, 35, 487–490.

    Article  Google Scholar 

  • Barghoorn, E. S., & Tyler, S. A. (1965). Microorganisms from the Gunflint Chert. Science, 147, 563–577.

    Article  Google Scholar 

  • Brasier, M. D., & Armstrong, H. (2005). Microfossils. Science: Blackwell. 304pp.

    Google Scholar 

  • Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., et al. (2002). Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.

    Article  Google Scholar 

  • Brasier, M. D., Green, O. R., & Mcloughlin, N. (2004). Characterization and critical testing of potential microfossils from the early Earth: The Apex ‘microfossil debate’ and its lessons for Mars sample return. International Journal of Astrobiology, 3, 1–12.

    Article  Google Scholar 

  • Brasier, M. D., Green, O. R., Lindsay, J. F., McLoughlin, N., Steele, A., & Stoakes, C. (2005). Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex Chert, Chinaman Creek Western Australia. Precambrian Research, 140, 55–102.

    Article  Google Scholar 

  • Brasier, M. D., McLoughlin, N., & Wacey, D. (2006). A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B, 361, 887–902.

    Article  Google Scholar 

  • Bromley, R. G. (2004). A stratigraphy of marine bioerosion. Geological Society, Special Publication, 228, 455–479.

    Article  Google Scholar 

  • Buick, R. (1984). Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites? Precambrian Research, 24, 157–172.

    Article  Google Scholar 

  • Buick, R. (1988). Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites? A reply. Precambrian Research, 39, 311–317.

    Article  Google Scholar 

  • Buick, R. (1990). Microfossil recognition in Archaean rocks: An appraisal of spheroids and filaments from 3500 M.Y old chert-barite at North Pole, Western Australia. Palaios, 5, 441–459.

    Article  Google Scholar 

  • Buick, R., Dunlop, J. S. R., & Groves, D. I. (1981). Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa, 5, 161–181.

    Article  Google Scholar 

  • Buick, R., Thornett, J. R., McNaughton, N. J., Smith, J. B., Barley, M. E., & Savage, M. (1995). Record of emergent continental crust 3.5 billion years ago in the Pilbara craton of Australia. Nature, 375, 574–577.

    Article  Google Scholar 

  • Buick, R. (2010). Ancient acritarchs. Nature, 463, 885–886.

    Article  Google Scholar 

  • Byerly, G. R., Lowe, D. R., Wooden, J. L., & Xiaogang, X. (2002). An Archean impact layer from the Pilbara and Kaapvaal Cratons. Science, 297, 1325–1327.

    Article  Google Scholar 

  • Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W., & Steele, A. (2003). Morphological biosignatures and the search for life on Mars. Astrobiology, 3, 351–368.

    Article  Google Scholar 

  • Cairns-Smith, A. G. (1985). Seven clues to the origin of life. Cambridge: Cambridge University Press. 154pp.

    Google Scholar 

  • Cavalier-Smith, T., Brasier, M. D., & Embley, T. M. (2006). How and when did microbes change the world? Philosophical Transactions of the Royal Society B, 361, 845–850.

    Article  Google Scholar 

  • Chan, C. S., De Stasio, G., Welch, S. A., Girasole, M., Frazer, B. H., Nesterova, M. V., et al. (2004). Microbial polysaccharides template assembly of nancrystal fibres. Science, 303, 1656–1658.

    Article  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Herzen, R. P. V., Ballard, R. D., et al. (1979). Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–1083.

    Article  Google Scholar 

  • Deegan, R. D. (2000). Pattern formation in drying drops. Physical Review, E61, 475–485.

    Google Scholar 

  • Delsemme, A. H. (1998). Cosmic origin of the biosphere. In A. Brock (Ed.), The molecular origins of life: Assembling the pieces of the puzzle (pp. 100–118). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fisk, M. R., Giovannoni, S. J., & Thorseth, I. H. (1998). Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science, 281, 978–980.

    Article  Google Scholar 

  • Folsome, C. (1977) Synthetic organic microstructures as model systems for early protobionts. In C. Ponnamperuma (Ed.), Chemical evolution of the early Precambrian (pp. 171–179).

    Google Scholar 

  • Fortin, D. (2004). What biogenic minerals tell us. Science, 303, 1618–1619.

    Article  Google Scholar 

  • Fouquet, Y., Vonstackelberg, U., Charlou, J. L., Donval, J. P., Foucher, J. P., Muhe, R., et al. (1991). Hydrothermal activity in the Lau Back-Arc Basin – Sulfides and water chemistry. Geology, 19, 303–306.

    Article  Google Scholar 

  • Furnes, H., & Muehlenbachs, K. (2003). Bioalteration recorded in ophiolitic pillow lavas. In Y. Dilek & P. T. Robinson (Eds.), Ophiolites in earth’s history. Geological Society of London, Special Publication 218 (pp. 415–426).

    Google Scholar 

  • Furnes, H., Staudigel, H., Thorseth, I. H., Torsvik, T., Muehlenbachs, K., & Tumyr, O. (2001). Bioalteration of basaltic glass in the oceanic crust. G3 2, 2000GC000150.

    Google Scholar 

  • Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H., & de Wit, M. (2004). Early life recorded in Archaean pillow lavas. Science, 304, 578–581.

    Article  Google Scholar 

  • Furnes, H., Banerjee, N. R., Staudigel, H., Muehlenbachs, K., Simonetti, A., de Wit, M., et al. (2006). Earth’s oldest microbial biomarkers in pillow lavas: A new geological setting in the search for early life. Geophysical Research Abstracts, 8, 11078.

    Google Scholar 

  • Furnes, H., Banerjee, N. R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M., & Van Kranendonk, M. (2007). Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks. Precambrian Research. Precambrian Research, 158, 156–176.

    Google Scholar 

  • Garcia-Ruiz, J. M., Hyde, S. T., Carnerup, A. M., Christy, A. G., Van Kranendonk, M. J., & Welham, N. J. (2003). Self-assembled silica-carbonate structures and detection of ancient microfossils. Science, 302, 1194–1197.

    Article  Google Scholar 

  • Grassineau, N. V., Nisbet, E. G., Bickle, M. J., Fowler, C. M. R., Lowry, D., Mattey, D. P., et al. (2001). Antiquity of the biological sulphur cycle: Evidence from sulphur and carbon isotopes in 2700 million-year old rock of the Belingwe Belt. Zimbabwe Proceedings of the Royal Society of London B, 268, 113–119.

    Article  Google Scholar 

  • Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences Letters, 27, 313–358.

    Article  Google Scholar 

  • Grotzinger, J. P., & Rothman, D. H. (1996). An abiotic model for stomatolite morphogenesis. Nature, 383, 423–425.

    Article  Google Scholar 

  • Hanczyc, M. M., Fujikawa, S. M., & Szostak, J. W. (2003). Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science, 302, 618–622.

    Article  Google Scholar 

  • Hofmann, H. J. (2000). Archean stromatolites as microbial archives. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediments (pp. 315–327). Berlin: Springer.

    Google Scholar 

  • Hoffman, H. J., Grey, K., Hickman, A. H., & Thorpe, R. (1999). Origin of 3.45Ga coniform stromatolites in Warawoona Group, Western Australia. Geological Society of America Bulletin, 111, 1256–1262.

    Article  Google Scholar 

  • Hopkinson, L., Roberts, S., Herrington, R., & Wilkinson, J. (1998). Self-organisation of submarine hydrothermal siliceous deposits: Evidence form the TAG hydrothermal mound, 26°N Mid-Atlantic Ridge. Geology, 26, 347–350.

    Article  Google Scholar 

  • Horita, J., & Berndt, M. E. (1999). Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285, 1055–1057.

    Article  Google Scholar 

  • House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., & Stetter, K. O. (2000). Carbon isotopic compositions of individual Precambrian microfossils. Geology, 28, 70–710.

    Article  Google Scholar 

  • Hooke, R. (1665) Micrographia. or, Some physiological descriptions of minute bodies made by magnifying glasses. London. J. Martyn and J. Allestry.

    Google Scholar 

  • Jannasch, H. W., & Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, 229, 717–725.

    Article  Google Scholar 

  • Javaux, E. J., Marshall, C. P., Bekker, A. (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliclastic deposits. Nature, 463, 934–938.

    Google Scholar 

  • Jogi, P., & Runnegar, B. (2003). Theoretical support for biological activity in ancient stromatolites. Abstract, NASA Astrobiology Institute.

    Google Scholar 

  • Kadar, M., Parisi, G., & Zhang, Y. (1986). Dynamic scaling of growing interfaces. Physical Review Letters, 56, 889–892.

    Article  Google Scholar 

  • Kamber, B. S., & Webb, G. E. (2001). The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta, 65, 2509–2525.

    Article  Google Scholar 

  • Kasting, J. F., & Catling, D. C. (2003). Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics, 41, 429–463.

    Article  Google Scholar 

  • Klein, C. (2005). Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90, 1473–1499.

    Article  Google Scholar 

  • Knauth, L. P., & Lowe, D. R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bulletin of Geological Society of America, 115, 566–580.

    Article  Google Scholar 

  • Knoll, A. H. (2003). Life on a young planet: The first three billion years of evolution on Earth. Princeton/Chichester: Princeton University Press. 277pp.

    Google Scholar 

  • Knoll, A. H., & Barghoorn, E. S. (1974). Ambient pyrite in Precambrian chert: New evidence and a theory. Proceedings of National Academy of Sciences of the United States of America, 71, 2329–2331.

    Article  Google Scholar 

  • Knoll, A. H., & Barghoorn, E. S. (1977). Archean microfossils showing cell division from the Swaziland system of South Africa. Science, 198, 396–398.

    Article  Google Scholar 

  • Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G., & Head, I. M. (2001). Microbial-silica interactions in Icelandic hot spring sinter: Possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433.

    Article  Google Scholar 

  • Konhauser, K. O., Jones, B., Reysenbach, A. L., & Renault, R. W. (2003). Hot spring sinters: Key to understanding Earth’s earliest life forms. Canadian Journal of Earth Sciences, 40, 1713–1724.

    Article  Google Scholar 

  • Lamarck, J. B. (1809). Philosophie zoologique ou exposition des considérations relatives à l’histoire naturelle des animaux. Paris. 467pp.

    Google Scholar 

  • Lindsay, J. F., & Brasier, M. D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Research, 114, 1–34.

    Article  Google Scholar 

  • Lindsay, J. F., Brasier, M. D., McLoughlin, N., Green, O. R., Fogel, M., Steele, A., et al. (2005). The problem of deep carbon – an Archaean Paradox. Precambrian Research, 143, 1–22.

    Article  Google Scholar 

  • Little, C. T. S., Glynn, S. E., & Mills, R. A. (2004). Four hundred and ninety million year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiology Journal, 21, 415–429.

    Article  Google Scholar 

  • Lowe, D. R. (1980). Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature, 284, 441–443.

    Article  Google Scholar 

  • Lowe, D. R. (1983). Restricted shallow-water sedimentation of early Archaean stromatolitic and evaporitic strata of the Strelley Pool chert, Pilbara block, Western Australia. Precambrian Research, 19, 239–283.

    Article  Google Scholar 

  • Lowe, D. R. (1994a). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387–390.

    Article  Google Scholar 

  • Lowe, D. R. (1994b). Early environments: Constraints and opportunities for early evolution. In S. Bengston (Ed.), Early life on earth, Nobel symposium 84 (pp. 24–35).

    Google Scholar 

  • Lowe, D. R., & Byerley, G. R. (1999). Geologic evolution of the barberton greenstone belt, South Africa. Geological Society of American Special Papers 329, Boulder, Colorado.

    Google Scholar 

  • Lowe, D. R., & Tice, M. M. (2004). Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology, 32, 493–496.

    Article  Google Scholar 

  • Lyell, C. (1830). Principles of Geology. 1st edn. vol 3. John Murray, London. 168pp.

    Google Scholar 

  • Maliva, R. G., Knoll, A. H., & Simonson, B. M. (2005). Secular change in the Precambrian silica cycle: Insights from chert petrology. G.S.A. Bulletin, 117, 835–845.

    Article  Google Scholar 

  • McCall, G. J. H. (2003). A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran. Iran Precambrian Research, 127, 5–17.

    Article  Google Scholar 

  • McCollum, T. M., & Seewald, J. S. (2006). Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters, 243, 74–84.

    Article  Google Scholar 

  • McLoughlin, N. (2006). Earth’s earliest biosphere: Western Australia. PhD Thesis, University of Oxford.

    Google Scholar 

  • McLoughlin, N., Wilson, L., & Brasier, M. D. (2008). Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology, 6, 95–105.

    Article  Google Scholar 

  • McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K. and Staudigel, H. (2009). Ichnotaxonomy of Microbial Trace Fossils in Volcanic Glass. J. Geol. Soc. London 166, 159–170.

    Google Scholar 

  • McLoughlin, N., Fliegel, D. J., Furnes, H., Staudigel, H., Simonetti, A., Zhao, G. C., and Robinson, P. T. (2010a). Assessing the Biogenicity and Syngenicity of Candidate Bioalteration Textures in Pillow Lavas of the ∼2.52 Ga Wutai Greenstone Terrane of China. Chinese Science Bulletin, 55, 188–199.

    Google Scholar 

  • McLoughlin, N., Staudigel, H., Furnes, H., Eickmann, B. and Ivarsson, M. (2010b in press). Mechanisms of microtunneling in Rock Substrates – Distinguishing Endolithic Biosignatures from Abiotic Microtunnels. Geobiology.

    Google Scholar 

  • Mills, R. A., & Elderfield, H. (1995). Rare Earth element geochemistry of hydrothermal deposits from the active TAG mound, 26ºN Mid-Atlantic ridge. Geochimica et Cosmochimica Acta, 59, 3511–3524.

    Article  Google Scholar 

  • Moorbath, S. (2005). Oldest rocks, earliest life, heaviest impacts, and the Hadean–Archaean transition. Applied Geochemistry, 20, 819–824.

    Article  Google Scholar 

  • Nijman, W., De Bruin, K., & Valkering, M. (1998). Growth fault control of early Archaean cherts, barite mounds, and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Research, 88, 25–52.

    Article  Google Scholar 

  • Nisbet, E. G. (2000). The realms of Archaean life. Nature, 405, 625–626.

    Article  Google Scholar 

  • Nisbet, E. G., & Fowler, M. R. (1996). The hydrothermal imprint on life: Did heat-shock proteins, metalloproteins and photosynthesis begin around hydrothermal vents? In C. J. MacLeod, P. A. Tyler, & C. L. Walker (Eds.), Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges, Geological Society, Special Publications 118 (pp. 239–251).

    Google Scholar 

  • Noffke, N. (2000). Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sedimentary Geology, 136, 207–215.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures – a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.

    Article  Google Scholar 

  • Noffke, N., Hazen, R., & Nhleko, N. (2003). Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31, 673–676.

    Article  Google Scholar 

  • Noffke, N, Eriksson, K. A., Hazen, R. M. & Simpson, E. L. (2006). A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology, 34, 253–256.

    Google Scholar 

  • Oehler, D. Z., Robert, F., Mostefaoui, S., Meibom, A., Selo, M., & McKay, D. S. (2006). Chemical mapping of Proterozoic organic matter at submicron spatial resolution. Astrobiology, 6, 838–850.

    Article  Google Scholar 

  • Orberger, B., Rouchon, V., Westall, F., de Vrise, S. T., Pinti, D. L., Wagner, C., et al. (2006). Microfacies and origin of some Archean cherts (Pilbara, Australia). G.S.A. Special Paper, 405, 133–156.

    Google Scholar 

  • Pasteris, J. D., & Wopenka, B. (2002). Images of the Earth’s oldest fossils? (discussion and reply). Nature, 420, 476–477.

    Article  Google Scholar 

  • Pasteris, J. D., & Wopenka, B. (2003). Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3, 727–738.

    Article  Google Scholar 

  • Phoenix, V. R., Bennett, P. C., Engel, A. S., Tyler, S. W., & Ferris, F. G. (2006). Chilean high-altitude hot-spring sinters: A model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology, 4, 15–28.

    Article  Google Scholar 

  • Pope, M. C., & Grotzinger, J. P. (2000). Controls on fabric development and morphology of tufas and stromatolites, uppermost Pethei group 1.8 Ga, Great Slave Lake, NW Canada. In Carbonate sedimentation and diagenesis in the evolving Precambrian world. S.E.P.M. Special Publications 67 (pp. 103–121).

    Google Scholar 

  • Pope, M. C., Grotzinger, J. P., & Schreiber, B. C. (2000). Evaporitic subtidal stroms produced by in situ precipitation: Textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70, 1139–1151.

    Article  Google Scholar 

  • Popper, K. (1959). The logic of scientific discovery. London: Hutchinson Press.

    Google Scholar 

  • Rasmussen, B. (2000). Filamentous microfossils in a 3, 235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676–679.

    Article  Google Scholar 

  • Rasmussen, B., & Buick, R. (2000). Oily old ores: Evidence for hydrothermal petroleum generation in an Arcgean massive sulfide deposit. Geology, 28, 731–734.

    Article  Google Scholar 

  • Robert, F., Selo, M., Hillion, F., & Skrzypczak, A. (2005). NanoSIMS images of Precambrian fossil cells. Lunar and Planetary Science, XXXVI, abstract 1314.

    Google Scholar 

  • Rona, P. A., Klinkhammer, G., Nelson, T. A., Trefry, J. H., & Elderfield, H. (1986). Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321, 33–37.

    Article  Google Scholar 

  • Rose, E. C., Mcloughlin, N., & Brasier, M. D. (2006). Ground truth: The epistemology of searching for the earliest life on Earth. In J. Seckbach (Ed.), Life as we know it: Cellular origin, life in extreme habitats and astrobiology 10. New York: Springer. 650 pp.

    Google Scholar 

  • Sagan, C., & Mullen, G. (1972). Earth and Mars: Evolution of atmospheres and surface temperatures. Science, 177, 52–56.

    Article  Google Scholar 

  • Santelli C. M., Orcutt B. N., Banning E., et al. (2008). Abundance and Diversity of microbial Life in ocean crust. Nature, 453, 653–657.

    Article  Google Scholar 

  • Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Research, 106, 117–134.

    Article  Google Scholar 

  • Schopf, J. W. (1992a). The oldest fossils and what they mean. In J. W. Schopf (Ed.), Major events in the history of life (pp. 29–63). Boston: John & Bartlett.

    Google Scholar 

  • Schopf, J. W. (1992b). Paleobiology of the Archaean. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere: A multidisciplinary study (pp. 25–39). New York: Cambridge University Press.

    Google Scholar 

  • Schopf, J. W. (1993). Microfossils of the Early Archaean Apex Chert: New evidence for the antiquity of life. Science, 260, 640–646.

    Article  Google Scholar 

  • Schopf, J. W. (1999). The cradle of life (p. 367). New York: Princeton University Press.

    Google Scholar 

  • Schopf, J. W. (2006). Fossil evidence of Archean life. Philosophical Transactions of the Royal Society B, 361, 869–886.

    Article  Google Scholar 

  • Schopf, J. W., & Klein, C. (1992). The Proterozoic biosphere: A multidisciplinary study. New York: Cambridge University Press.

    Google Scholar 

  • Schopf, J. W., & Packer, B. M. (1987). Early Archaean (3.3 Billion to 3.5 Billion-year-old) microfossils from Warawoona Group, Australia. Science, 237, 70–73.

    Article  Google Scholar 

  • Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., & Benmore, W. C. (1979). Stromatolite morphogenesis: Progress and problems. Canadian Journal of Earth Sciences, 16, 992–1015.

    Google Scholar 

  • Shen, Y., Buick, R., & Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature, 410, 77–81.

    Article  Google Scholar 

  • Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F., & Lacrampe-Couloume, G. (2002). Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature, 416, 522–524.

    Article  Google Scholar 

  • Shock, E. L. (1990). Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of Life and Evolution of the Biosphere, 20, 331–367.

    Article  Google Scholar 

  • Staudigel, H., Furnes, H., McLoughlin, N., Banerjee, N. R., Connell, L. B., Templeton, A. (2008) 3.5 Billion years of glass bioalteration: Volcanic rocks as a basis for microbial life? Earth Science Reviews, 89, 156–176.

    Google Scholar 

  • Staudigel, H., Furnes, H., Banerjee, N. R., Dilek, Y., & Muehlenbachs, K. (2006). Microbes and volcanoes: A tale from the oceans, ophiolites and greenstone belts. GSA Today, 16(10), 4–11.

    Article  Google Scholar 

  • Stetter, K. O. (1996). Hyperthermophiles in the history of life. In G. R. Bock & J. A. Goode (Eds.), Evolution of hydrothermal ecosystems on Earth (and Mars?) (pp. 1–18). Chichester: Wiley.

    Google Scholar 

  • Sugitani, K., Yamamoto, K., Adachi, M., Kawabe, I., & Sugisaki, R. (1998). Archaean cherts derived from chemical, biogenic and clastic sedimentation in a shallow restricted basin; examples from the Gorge Creek Group in the Pilbara Block. Sedimentology, 45, 1045–1062.

    Article  Google Scholar 

  • Sugitani, K., Nagaoka, T., Mimura, K., Grey, K., Van Kranendonk, M., Minami, M., et al. (2006). Discovery of possible microfossils from c. 3.4 Ga Strelley Pool Chert, Kelly Group, Pilbara Craton: Evidence for antiquity of life and biotic diversity? Geophysical Research Abstracts, 8, 02562.

    Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, M., & Logan, G. A. (1999). 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.

    Article  Google Scholar 

  • Teske, A., Hinrichs, K.-U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., et al. (2002). Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 68, 1994–2007.

    Article  Google Scholar 

  • Thompson, D. A. W. (1917). On growth and form. Cambridge: Cambridge University Press.

    Google Scholar 

  • Thorseth, I. H., Furnes, H., & Heldal, M. (1992). The importance of microbiological activity in the alteration of natural basaltic glass. Geochimica et Cosmochimica Acta, 56, 845–850.

    Article  Google Scholar 

  • Thorseth, I. H., Torsvik, V., Daae, F. L., Pederson, R. B., & Keldysh-98 Scientific Party. (2001). Diversity of life in ocean floor basalts. Earth and Planetary Science Letters, 194, 31–37.

    Article  Google Scholar 

  • Tice, M. M., & Lowe, D. R. (2004). Photosynthetic microbial mats in the 3, 416-Myr-old ocean. Nature, 431, 549–552.

    Article  Google Scholar 

  • Tice, M. M., & Lowe, D. R. (2006). The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Science Reviews, 76, 259–300.

    Article  Google Scholar 

  • Torsvik, T., Furnes, H., Muehlenbachs, K., Thorseth, I. H., & Tumyr, O. (1998). Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth and Planetary Science Letters, 162, 165–176.

    Article  Google Scholar 

  • Trewin, N. H., & Rice, C. M. (2004). The Rhynie hot-spring system: Geology, biota and mineralization. Transactions of the Royal Society of Edinburgh: Earth Sciences 94 (246 pp.).

    Google Scholar 

  • Tyler, S. A., & Barghoorn, E. S. (1963). Ambient pyrite grains in Precambrian cherts. American Journal of Science, 261, 424–432.

    Article  Google Scholar 

  • Ueno, Y., Isozaki, Y., Yurimoto, H., & Maruyama, S. (2001). Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. International Geology Review, 43, 196–212.

    Article  Google Scholar 

  • Ueno, Y., Yoshioka, H., Maruyama, S., & Isozaki, Y. (2004). Carbon isotopes and petrography of kerogens in 3.5 Ga hydrothermal silica dykes in the North Pole area, Western Australia. Geochimica Cosmochimica Acta, 68, 573–589.

    Article  Google Scholar 

  • Van Kranendonk, M. J. (2006). Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews, 74, 197–240.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Hickman, A. H., Williams, I. R., & Nijman, W. (2001). Archean geology of the east Pilbara granite-greenstone Terrane Western Australia – A field guide. Western Australia Geologic Survey, Record 2001/9, 134 pp.

    Google Scholar 

  • Van Kranendonk, M. J., Webb, G. E., & Kamber, B. S. (2003). Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology, 1, 91–108.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Collins, W. J., Hickman, A., & Pawley, M. J. (2004). Critical tests of ­vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Research, 131, 173–211.

    Article  Google Scholar 

  • Van Zuilen, M. A., Lepland, A., & Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.

    Article  Google Scholar 

  • Vearncombe, S., Barley, M. E., Groves, D. I., McNaughton, N. J., Mikuchi, E. J., & Vearncombe, J. R. (1995). 3.26 Ga black-smoker type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. Journal of Geological Society London, 152, 587–590.

    Article  Google Scholar 

  • Von Damm, K. L., Oosting, S. E., Kozlowski, R., Buttermore, L. G., Colodner, D. C., Edmond, J. M., et al. (1995). Evolution of east Pacific rise hydrothermal vent fluids following a volcanic eruption. Nature, 375, 47–50.

    Article  Google Scholar 

  • Wacey, D., McLoughlin, N., Green, O. R., Stoakes, C. A., & Brasier, M. D. (2006). The 3.4 billion-year-old Strelley Pool Sandstone: A new window into early life on Earth. International Journal of Astrobiology, 5, 333–342.

    Article  Google Scholar 

  • Wacey, D., Kilburn, M. R., McLoughlin, N., Parnell, J., Stoakes, C. A., & Brasier, M. D. (2008). Use of NanoSIMS to investigate early life on Earth: Ambient inclusion trails in a c.3400 Ma sandstone. Journal of the Geological Society London, 165, 43–53.

    Article  Google Scholar 

  • Wacey, D., McLoughlin, N., & Brasier, M. D. (2008). Looking through windows onto the earliest history of life on Earth and Mars. In J. Seckbach & M. Walsh (Eds.), From fossils to astrobiology (pp. 39–68). Springer: Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Wacey, D. (2010). Stromatolites in the ∼3400 Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology, 10, 381–395.

    Google Scholar 

  • Wacey, D (2010a). Stromatolites in the ∼3400 Ma Strelley Pool Formation, Western Australia: examining Biogenicity from the Macro- to Nano- Scale. Astrobiology, 10, 381–395.

    Google Scholar 

  • Wacey, D., Saunders, M., & Kilburn, M. R. (2010b in review) Microbially-mediated pyrite oxidation in a 3.4 billion-year-old sedimentary environment. A new pyrite-based microbial metabolism on the early Earth.

    Google Scholar 

  • Walsh, M. M. (1992). Microfossils and possible microfossils from the early Archaean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research, 54, 271–292.

    Article  Google Scholar 

  • Walsh, M. M., & Lowe, D. R. (1999). Modes of accumulation of carbonaceous matter in the Early Archaean: A petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In D. R. Lowe & G. R. Byerley (Eds.), Geologic evolution of the Barberton greenstone belt, South Africa, Geological Society of America, Special Papers, 329 (pp. 115–132). Colorado: Boulder.

    Google Scholar 

  • Walter, M. R. (1976). Stromatolites. Amsterdam: Elsevier. 790 pp.

    Google Scholar 

  • Walter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites, 3, 400–3, 500 Myr old from the North Pole area, Western Australia. Nature, 284, 443–445.

    Article  Google Scholar 

  • Westall, F. (2005). Life on the early Earth: A sedimentary view. Science, 308, 366–367.

    Article  Google Scholar 

  • Westall, F., de Wit, M. J., van der Dann, J., de Gaast, S., Ronde, C. E. J., & Gerneke, D. (2001). Early Archaean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 106, 93–116.

    Article  Google Scholar 

  • Zhang, Y., & Golubic, S. (1987). Endolithic microfossils (Cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropalaeontologica Sinica, 4, 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brasier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brasier, M.D., Wacey, D., McLoughlin, N. (2011). Taphonomy in Temporally Unique Settings: An Environmental Traverse in Search of the Earliest Life on Earth. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_14

Download citation

Publish with us

Policies and ethics