Skip to main content
Book cover

Taphonomy pp 435–456Cite as

Phosphatization Through the Phanerozoic

  • Chapter
  • First Online:

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

Phosphatization of soft tissues and skeletal remains has varied temporally and taxonomically through the Phanerozoic. During the Cambrian through early Ordovician, microscopic arthropods and animal embryos were preferentially preserved. Phosphatization was uncommon during the rest of the Paleozoic, as recalcitrant tissues of a few taxa were preserved in hospitable microenvironments. The Cretaceous through Eocene saw another expansion of phosphatization, with a strong bias toward fish remains already enriched in apatite. Throughout its Phanerozoic history, phosphatization exhibited a taphonomic bias toward taxa with recalcitrant tissues that could resist the early stages of organic decay, taxa with organic structures already enriched in calcium phosphate, and, in many cases, taxa with small body sizes. The pulse of phosphatization during the Cambrian through Early Ordovician may have been facilitated by the generally lower levels of mixed layer development in the upper few centimeters of seafloor sediments during that time period, whereas the Cretaceous through Eocene increase in phosphatization was possibly related to the enlargement of euxinic epicontinental seaways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed, E. A., & Kurzweil, J. (2002). Sedimentological, mineralogical and geochemical characteristics of Upper Cretaceous Egyptian phosphorites with special reference to the microbial role in phosphogenesis. In M. Wagreich (Ed.), Aspects of Cretaceous stratigraphy and palaeobiogeography.

    Google Scholar 

  • Allison, P. A. (1988). Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia, 21, 403–410.

    Article  Google Scholar 

  • Allison, P. A., & Briggs, D. E. G. (1993). Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 21, 605–608.

    Google Scholar 

  • Andres, D. (1989). Phosphatisierte Fossilien aus dem unteren Ordoviz von Südschweden. Berliner geowissenschaftliche Ahandlungen (A), 106, 9–19.

    Google Scholar 

  • Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., & Corsetti, F. A. (2007). Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445, 198–201.

    Article  Google Scholar 

  • Baturin, G. N. (1999). Hypothoses of phosphogenesis and ocean environment. Lithology and Mineral Resources, 34, 411–430.

    Google Scholar 

  • Baturin, G. N., & Dubinchuk, V. G. (2003). The composition of phosphatized bones in Recent sediments. Lithology and Mineral Resources, 38, 265–274.

    Article  Google Scholar 

  • Baturin, G. N., Zhegallo, E. A., & Isaeva, A. B. (1998). The formation of phosphate grains in sediments of the Namibian Shelf. Okeanologiya, 38, 260–269.

    Google Scholar 

  • Bischoff, G. C. O. (1978). Internal structures of conulariid tests and Circonulariina n. suborder (Cnidaria, Scyphozoa). Senckenbergiana Lethaea, 59, 275–327.

    Google Scholar 

  • Bischoff, G. C. O., & Hall, S. J. (1980). Growth of the post-larval echinoderm endoskeleton documented by phosphatized Silurian remains. Senckenbergiana Lethaea, 61, 145–171.

    Google Scholar 

  • Bréhéret, J. G. (1991). Phosphatic concretions in black facies of the Aptian-Albian Marnes bleues Formation of the Vocontian basin (SE France), and at site DSDP 369: Evidence of benthic microbial activity. Cretaceous Research, 12, 411–435.

    Article  Google Scholar 

  • Briggs, D. E. G. (2003). The role of decay and mineralization in the preservation of soft-bodied animals. Annual Review of Earth and Planetary Sciences, 31, 275–301.

    Article  Google Scholar 

  • Briggs, D. E. G., & Kear, A. J. (1993). Fossilization of soft tissue in the laboratory. Science, 259, 1439–1442.

    Article  Google Scholar 

  • Briggs, D. E. G., & Wilby, P. R. (1996). The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society of London, 153, 665–668.

    Article  Google Scholar 

  • Burnett, W. C. (1977). Geochemistry and origin of phosphorite deposits from off Peru and Chile. Bulletin of the Geological Society of America, 88, 813–823.

    Article  Google Scholar 

  • Dong, X., Donoghue, P. C. J., Cheng, H., & Liu, J. B. (2004). Fossil embryos from the Middle and Late Cambrian Period of Hunan, south China. Nature, 427, 237–240.

    Article  Google Scholar 

  • Dong, X., Donoghue, P. C. J., Liu, Z., Liu, J., & Peng, F. (2005). The fossils of Orsten-type preservation from Middle and Upper Cambrian in Hunan, China – Three-dimensionally preserved soft-bodied fossils. Chinese Science Bulletin, 50, 1352–1357.

    Article  Google Scholar 

  • Donoghue, P. C. J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X., Val’kov, A. K., et al. (2006). Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution and Development, 8, 232–238.

    Article  Google Scholar 

  • Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Oliveri, P., Gao, F., & Li, C. W. (2005). Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 38, 101–109.

    Article  Google Scholar 

  • Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Gao, F., Oliveri, P., & Li, C. W. (2006). Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China. Palaios, 21, 3–14.

    Article  Google Scholar 

  • Droser, M. L. (1987). Trends in depth and extent of bioturbation in Great Basin Precambrian-Ordovician strata, California, Nevada, and Utah. Unpublished Ph.D. Thesis, University of Southern California, 365 pp.

    Google Scholar 

  • Duncan, I. J., Briggs, D. E. G., & Archer, M. (1998). Three-dimensionally mineralized insects and millipedes from the Tertiary of Riversleigh, Queensland, Australia. Palaeontology, 41, 835–851.

    Google Scholar 

  • Etter, W. (2002). Monte San Giorgio: Remarkable Triassic marine vertebrates. In D. J. Bottjer, W. Etter, J. W. Hagadorn, & C. M. Tang (Eds.), Exceptional fossil preservation: A unique view on the evolution of marine life. New York: Columbia University Press.

    Google Scholar 

  • Föllmi, K. B. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 40, 55–124.

    Article  Google Scholar 

  • Froelich, P. N., Arthur, M. A., Burnett, W. C., Deakin, M., Hensley, V., Jahnke, R., et al. (1988). Early diagenesis of organic material in Peru continental margin sediments: Phosphorite precipitation. Marine Geology, 80, 309–343.

    Article  Google Scholar 

  • Garrison, R. E., Kastner, M., & Reimers, C. E. (1990). Miocene phosphogenesis in California. In W. C. Burnett & S. R. Riggs (Eds.), Phosphate deposits of the world: volume 3, Neogene to Modern phosphorites. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghosh, S. K. (1984). Late Cretaceous condensed sequence, Venezuelan Andes. In W. E. Bonini, R. B. Hargraves, & R. Shagam (Eds.), The Caribbean-South American plate boundary and regional tectonics. Geological Society of America Memoirs 162

    Google Scholar 

  • Glenn, C. R., Föllmi, K. B., Riggs, S. R., Baturin, G. N., Grimm, K. A., Trappe, J., et al. (1994). Phosphorus and phosphorites: Sedimentology and environments of formation. Eclogae Geologicae Helvetiae, 87, 747–788.

    Google Scholar 

  • Grogan, E. D., & Lund, R. (1997). Soft tissue pigments of the upper Mississippian chondrenchelyid Harpagofututor volsellorhinus (Chondrichthyes, Holocephalie) from the Bear Gulch Limestone, Montana, USA. Journal of Paleontology, 71, 337–342.

    Google Scholar 

  • Hagadorn, J. W. (2002). Bear Gulch: An exceptional Upper Carboniferous Plattenkalk. In D. J. Bottjer, W. Etter, J. W. Hagadorn, & C. M. Tang (Eds.), Exceptional fossil preservation: A unique view on the evolution of marine life. New York: Columbia University Press.

    Google Scholar 

  • Jahnke, R. A., Emerson, A. R., Roe, K. K., & Burnett, W. C. (1983). The present formation of apatite in Mexican continental margin sediments. Geochimica et Cosmochimica Acta, 47, 259–266.

    Article  Google Scholar 

  • Kholodov, V. N., & Paul, R. K. (1995). The Black Sea: A geochemical model of phosphate deposition. Litol Polezn Iskop, 6, 563–581.

    Google Scholar 

  • Klug, C., Hagdorn, H., & Montenari, M. (2005). Phosphatized soft-tissue in Triassic bivalves. Palaeontology, 48, 833–852.

    Article  Google Scholar 

  • Kouchinsky, A., Bengtson, S., & Gershwin, L. A. (1999). Cnidarian-like embryos associated with the first shelly fossils in Siberia. Geology, 27, 609–612.

    Article  Google Scholar 

  • Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., Martin-Algarra, A., et al. (1994). Biological processes and apatite formation in sedimentary environments. Eclogae Geologicae Helvetiae, 87, 701–745.

    Google Scholar 

  • Kremer, B. (2005). Mazuelloids: Product of post-mortem phosphatization of acanthomorphic acritarchs. Palaios, 20, 27–36.

    Article  Google Scholar 

  • Lamboy, M., Purnachandra Rao, V., Ahmed, E., & Azzouzi, N. (1994). Nannostructure and significance of fish coprolites in phosphorites. Marine Geology, 120, 373–383.

    Article  Google Scholar 

  • Lucas, J., & Prevot, L. E. (1991). Phosphates and fossil preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record. New York: Plenum.

    Google Scholar 

  • Lund, R., Feldman, H., Lund, W. L., & Maples, C. G. (1993). The depositional environment of the Bear Gulch Limestone, Fergus County, Montana. In L. D. V. Hunter (Ed.), Energy and mineral resources of central Montana: 1993 Field Conference Guidebook. Billings: Montana Geological Society.

    Google Scholar 

  • Maas, A., Waloszek, D., & Müller, K. J. (2003). Morphology, ontogeny, and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian ‘Orsten’ of Sweden. Fossils and Strata, 49, 1–238.

    Google Scholar 

  • Mapes, R. H., Landman, N. H., Tanabe, K., & Maeda, H. (2002). Intracameral membranes in Permian ammonoids from the Buck Mountain, Nevada Lagerstätte. Geological Society of America, Annual Meeting Abstracts with Programs 34.

    Google Scholar 

  • Mapes, R. H., Maeda, H., Piercey, P., & Landman, N. (2003). An unusual taphonomic scenario for the Buck Mountain (Permian) cephalopod fauna in Nevada. Geological Society of America, Annual Meeting Abstracts with Programs 35 (496 p.).

    Google Scholar 

  • Martill, D. M. (1988). Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31, 1–18.

    Google Scholar 

  • Martín-Algarra, A., & Sánchez-Navas, A. (1995). Phosphate stromatolites from condensed cephalopod limestones, Upper Jurassic, southern Spain. Sedimentology, 42, 893–919.

    Article  Google Scholar 

  • Martindale, S. G. (1986) Depositional environments and phosphatization of the Meade Peak Phosphatic Shale Tongue of the Phosphoria Formation, Leach Mountains, Nevada. Contributions to Geology, University of Wyoming 24, 143–156.

    Google Scholar 

  • McNamara, M. E., Orr, P. J., Alcala, L., Anadon, P., Penalver Molla, E. (2004). Exceptionally preserved frogs from the Miocene of Libros, NE Spain. Geological Society of America, Annual Meeting Abstracts with Programs 36 (384 p.).

    Google Scholar 

  • Müller, K. J., Walossek, D., & Zakharov, A. (1995). Orsten type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 197, 101–118.

    Google Scholar 

  • Pinna, G. (1985). Exceptional preservation in the Jurassic of Osteno. Philosophical Transactions of the Royal Society of London, B, 311, 171–180.

    Article  Google Scholar 

  • Purnachandra Rao, V., Mohan Rao, K., & Raju, D. S. N. (2000). Quaternary phosphorites from the continental margin off Chennai, southeast India: Analogs of ancient phosphate stromatolites. Journal of Sedimentary Research, 70, 1197–1209.

    Article  Google Scholar 

  • Purnachandra Rao, V., Michard, A., Naqvi, S. W. A., Böttcher, M. E., Krishnaswamy, R., Thamban, M., et al. (2002). Quaternary phosphorites off the southeast coast of India. Chemical Geology, 182, 483–502.

    Article  Google Scholar 

  • Reimers, C. E., Kastner, M., & Garrison, R. E. (1990). The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. In W. C. Burnett & S. R. Riggs (Eds.), Phosphate deposits of the world: volume 3, Neogene to Modern phosphorites. New York: Cambridge University Press.

    Google Scholar 

  • Renesto, S., & Avanzini, M. (2002). Skin remains in a juvenile Macrocnemus bassanii Nopsca (Reptilia, Prolacertiformes) from the Middle Triassic of Italy. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 224, 31–48.

    Google Scholar 

  • Resig, J. M., & Glenn, C. R. (1997). Foraminifera encrusting phosphoritic hardgrounds of the Peruvian upwelling zone: Taxonomy, geochemistry, and distribution. Journal of Foraminiferal Research, 27, 133–150.

    Article  Google Scholar 

  • Roy, K., & Fåhraeus, L. E. (1989). Tremadocian (Early Ordovician) nauplius-like larvae from the Middle Arm Point Formation, Bay of Islands, western Newfoundland. Canadian Journal of Earth Sciences, 26, 1802–1806.

    Google Scholar 

  • Sagemann, J., Bale, S. J., Briggs, D. E. G., & Parkes, R. J. (1999). Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta, 63, 1083–1095.

    Article  Google Scholar 

  • Schulz, H. N., & Schulz, H. D. (2005). Large sulfur bacteria and the formation of phosphate. Science, 307, 416–418.

    Article  Google Scholar 

  • Siveter, D. J., Wiliams, M., & Waloszek, D. (2001). A phosphatocopid crustacean with appendages from the Lower Cambrian. Science, 293, 479–481.

    Article  Google Scholar 

  • Soudry, D. (2000). Microbial phosphate sediment. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediments. Berlin: Springer.

    Google Scholar 

  • Steiner, M., Zhu, M. Y., Li, G. X., & Erdtmann, B. D. (2004). New Early Cambrian bilaterian embryos and larvae from China. Geology, 32, 833–836.

    Article  Google Scholar 

  • Stinnesbeck, W., Ifrim, C., Schmidt, H., Rindfleisch, A., Buchy, M. C., Frey, E., et al. (2005). A new lithographic limestone deposit in the Upper Cretaceous Austin Group at El Rosario, county of Múzquiz, Coahuila, northeastern Mexico. Revista Mexicana de Ceincias Geológicas, 22, 401–418.

    Google Scholar 

  • Tanabe, K., Napes, R. H., & Kidder, D. L. (2001). A phosphatized cephalopod mouthpart from the Upper Pennsylvanian of Oklahoma, USA. Paleontological Research, 5, 311–318.

    Google Scholar 

  • Trappe J (1998) Phanerozoic phosphorite depositional systems: A dynamic model for a sedimentary resource system. Lecture Notes in Earth Science 76:1–316.

    Google Scholar 

  • Trinajistic, K., Marshall, C., Long, J., & Bifield, K. (2007). Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3, 197–200.

    Article  Google Scholar 

  • Walossek, D., & Szaniawski, H. (1991). Cambrocaris baltica n. gen. n. sp., a possible stem-­lineage crustacean from the Upper Cambrian of Poland. Lethaia, 24, 363–378.

    Article  Google Scholar 

  • Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., & Müller, K. J. (1993). Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26, 7–15.

    Article  Google Scholar 

  • Walossek, D., Repetski, J. E., & Müller, K. J. (1994). An exceptionally preserved parasitic arthropod, Heymonsicambria taylori n. sp. (Arthropoda incertae sedis: Pentastomida), from Cambrian-Ordovician beds of Newfoundland, Canada. Canadian Journal of Earth Sciences, 31, 1664–1671.

    Article  Google Scholar 

  • Weitschat, W. (1995). First evidence of fossil ciliates – Preserved in phosphatized ostracods from the Lower Triassic of Spitsbergen. Ostracoda and Biostratigraphy, 426.

    Google Scholar 

  • Wilby, P. R., & Whyte, M. A. (1995). Phosphatized soft tissues in bivalves from the Portland Roach of Dorset (Upper Jurassic). Geological Magazine, 132, 117–120.

    Article  Google Scholar 

  • Wilby, P. R., Briggs, D. E. G., Bernier, P., & Gaillard, C. (1996). Role of microbial mats in the fossilization of soft tissues. Geology, 24, 787–790.

    Article  Google Scholar 

  • Xiao, S., & Knoll, A. H. (1999). Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32, 219–240.

    Article  Google Scholar 

  • Yue, Z., & Bengtson, S. (1999). Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia, 32, 181–195.

    Google Scholar 

  • Zítt, J., & Nekvásilova, O. (1993). Octocoral encrusters of rock substrates in the Upper Cretaceous of Bohemia. Journal of Czech Geological Society, 38, 71–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Q. Dornbos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dornbos, S.Q. (2011). Phosphatization Through the Phanerozoic. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_12

Download citation

Publish with us

Policies and ethics