Skip to main content

Taphonomy of Reefs Through Time

  • Chapter
  • First Online:
Book cover Taphonomy

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

Reefs are susceptible to multiple physical, chemical and biological taphonomic processes. Bioerosion, in particular has escalated through time and might be expected to have influenced the taphonomy of reefs. The following biases can be predicted: (1) In the absence of grain-reducing activities by reef biota (fish, echinoids, and clionid sponges) abrasion on Paleozoic reefs would have been dominated by physical processes and sediment grains may have been more coarse. (2) Increased bioerosion since the Jurassic is such that modern reefs are quickly reduced to rubble and sand leaving only the resilient branching corals and thick coralline algae. By contrast, many pre-Jurassic reefs commonly preserve intact, in situ frameworks that include massive or laminar, often soft-sediment-dwelling, growth forms. (3) After the appearance of reef fish in the Eocene, sediment production and distribution within reef complexes is likely to have increased markedly but this has not yet been fully elucidated. (4) Escalation in rates of bioerosion from the Miocene onwards are such that it can be expected that substantial aprons of reef-slope sediment may not have been present on pre-Miocene reefs.

Evidence is persuasive that changing global seawater chemistry has exerted secular changes in the dominant carbonate mineralogy of reef organisms and early diagenetic cements but the subsequent effects upon reef taphonomy remain to be documented.

The current phase of climate change will exert a profound effect upon reef ecology and taphonomy. Reduction of reef herbivore populations will almost certainly lead to an increase in soft-bodied algal biomass, and a decrease in coral cover, particularly in areas of eutrophication or outbreaks of disease. Bleaching as a result of global warming may lead to significant or widespread coral mortality. Calcification rates are already between 6% and 20% lower than they were under pre-industrial conditions due to ocean acidification. These processes will reduce the structural integrity of reefs. Future death assemblages and the subsequent fossil record of reefs will be dominated by highly degraded coral fragments and grains with limited in situ reef frameworks, endolithic algal activity, and intense bioerosion.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson, T. (1972). Micritization of carbonate particles: Processes of precipitation and dissolution in modern shallow-marine sediments. Bulletin Geological Institute University Uppsala NS, 3, 201–236.

    Google Scholar 

  • Archer, D., Kheshgi, H., & Maier-Reimer, E. (1997). Multiple timescales for neutralization of fossil fuel CO2. Geophysical Research Letters, 24, 405–408.

    Article  Google Scholar 

  • Aronson, R. B., & Ellner, S. P. (2007). Biotic turnover events on coral reefs: A probabilistic approach. In R. B. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies. New York: Springer.

    Chapter  Google Scholar 

  • Aronson, R. B., & Precht, W. F. (1997). Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology, 23, 326–346.

    Google Scholar 

  • Aronson, R. B., Precht, W. F., Macintyre, I. G., & Murdoch, T. J. T. (2000). Coral bleach-out in Belize. Nature, 405, 36–38.

    Article  Google Scholar 

  • Bak, R. P. M. (1983). Neoplasia, regeneration and growth in the reef-building coral Acropora palmata. Marine Biology, 77, 221–227.

    Article  Google Scholar 

  • Bak, R. P. M., & Nieuwland, G. (1995). Long-term change in coral communities along depth gradients over leeward reefs in the Netherlands Antilles. Bulletin of Marine Science, 56, 609–619.

    Google Scholar 

  • Bellwood, D. R. (1995). Carbonate transport and within-reef patterns of bioerosion and sediment release by parrotfishes (Scaridae) on the GBR. Marine Ecology Press Series, 117, 127–136.

    Article  Google Scholar 

  • Bellwood, D. R. (1996). Coral reef crunchers. Nature Australia, 25, 48–55.

    Google Scholar 

  • Bellwood, D. R. (1997). Reef fish biogeography; habitat associations, fossils and phylogenies. Proceedings of the 8th international coral reef symposium. Panama, 2, 1295–1300.

    Google Scholar 

  • Bellwood, D. R. (2003). Origins and escalation of herbivory in fishes: A functional perspective. Paleobiology, 29, 71–83.

    Article  Google Scholar 

  • Bellwood, D. R., & Schulz, O. (1991). A review of the fossil record of the parrotfishes (family Scaridae) with a description of a new Calatomus species from the middle Miocene (Badenian) of Austria. Annalen Naturhistorisches Museum Wien, 92, 55–71.

    Google Scholar 

  • Best, M. M. R., Burniaux, P., & Pandolfi, J. M. (2004). Experimental bivalve taphonomy in reefs of Madang Lagoon, Papua New Guinea. In M. M. R. Best & J. B. Caron (Eds.), Canadian paleontology conference proceedings, no. 2. Geological Association of Canada Special Publication, Calgary.

    Google Scholar 

  • Bishop, D., & Greenstein, B. (2001). The effects of hurricane Floyd on the fidelity of coral life and death assemblages in San Salvador, Bahamas: Does a hurricane leave a signature in the fossil record? Geological Society of America, Abstracts with Programs, 34(2), A7.

    Google Scholar 

  • Brett, C. E. (1988). Paleoecology and evolution of marine hard communities: An overview. Palaios, 3, 374–378.

    Article  Google Scholar 

  • Bromley, R. G. (1975). Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology, 18, 725–739.

    Google Scholar 

  • Bromley, R. G. (1992). Bioerosion: Eating rocks for fun and profit. In C. G. Maples & R. R. West (Eds.), Trace fossils: Short courses in paleontology 5 (pp. 121—129). University of Tennessee.

    Google Scholar 

  • Budd, A. F., & Kievman, C. M. (1994). Coral assemblages and reef environments in the Bahamas Drilling Project cores. In Final draft report of the Bahamas drilling project, 3. Coral Gables, Florida. Rosensteil School of Marine and Atmospheric Science, University of Miami.

    Google Scholar 

  • Budd, A. F., Stemann, T. A., & Johnson, K. G. (1994). Stratigraphic distribution of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68, 951–977.

    Google Scholar 

  • Coates, A. G., & Jackson, J. B. C. (1985). Morphological themes in the evolution of clonal and aclonal marine invertebrates. In J. B. C. Jackson, L. W. Buss, & R. E. Cook (Eds.), Population biology and evolution of clonal organisms. New Haven: Yale University Press.

    Google Scholar 

  • Coles, S. L. (2001). Coral bleaching: What do we know and what can we do? In Proceedings of the workshop on mitigating coral bleaching impact through MPA design, Honolulu, HI.

    Google Scholar 

  • Connell, J. H. (1997). Disturbance and recovery of coral assemblages. Coral Reefs, 16, 101–113.

    Article  Google Scholar 

  • Cummins, H., Powell, E. N., Stanton, R. J., Jr., & Staff, G. (1986). The size-frequency distribution in palaeoecology: Effects of taphonomic processes during formation of molluscan death assemblages in Texas bays. Palaeontology, 29, 495–518.

    Google Scholar 

  • DeVantier, L. M., & Done, T. J. (2007). Inferring past outbreaks of the crown-of-thorns seastar from scar patterns on coral heads. In R. B. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 85–125). New York: Springer.

    Chapter  Google Scholar 

  • Edinger, E. N., Pandolfi, J. M., & Kelley, R. A. (2001). Community structure of quaternary coral reefs compared with recent life and death assemblages. Paleobiology, 27, 669–694.

    Article  Google Scholar 

  • Fischer, A. G. (1983). Long-term climatic oscillations recorded in stratigraphy. In W. Berger (Ed.), Climate in earth history. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Fürsich, F. T. (1977). Corallian (Upper Jurassic) marine benthic associations from England and Normandy. Palaeontology, 20, 337–385.

    Google Scholar 

  • Gardner, T. A., Côté, I. M., Gill, J. A., Gran, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958–960.

    Article  Google Scholar 

  • Gattuso, J.-P., Pichon, M., Delesalle, B., Canon, C., & Frankignoulle, M. (1996). Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 145, 109–121.

    Article  Google Scholar 

  • Ginsburg, R. N. (1964). South Florida carbonate sediments. GSA annual meeting, Guidebook for field trip #1. GSA, Boulder.

    Google Scholar 

  • Glynn, P. W. (1993). Coral reef bleaching: Ecological perspectives. Coral Reefs, 12, 1–7.

    Article  Google Scholar 

  • Glynn, P. W. (2000). El Niño-Southern Oscillation mass mortalities of reef corals: A model of high temperature marine extinctions? In E. Insalaco, P. W. Skelton, & T. J. Palmer (Eds.), Carbonate platform systems: Components and interactions, Geological Society of London, Special Publication 178 (pp. 117—133).

    Google Scholar 

  • Goreau, T. F. (1959). The ecology of Jamaican coral reefs 1. Species composition and zonation. Ecology, 40, 67–90.

    Article  Google Scholar 

  • Grammer, G. M., Crescini, C. M., McNeill, D. F., & Taylor, L. H. (1999). Quantifying rates of syndepositional marine cementation in deeper platform environments-new insight into a fundamental process. Journal of Sedimentary Research, 69, 202–207.

    Google Scholar 

  • Grassle, J. F. (1973). Variety in coral reef communities. In O. A. Jones & R. Endean (Eds.), Biology and geology of coral reefs II, biology 1 (pp. 247–270). New York: Academic.

    Google Scholar 

  • Greenstein, B. J. (1989). Mass mortality of the west Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): A natural experiment in taphonomy. Palaios, 4, 487–492.

    Article  Google Scholar 

  • Greenstein, B. J. (2007). Taphonomy: Detecting critical events in fossil reef-coral assemblages. In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 31–60). Springer: New York.

    Chapter  Google Scholar 

  • Greenstein, B. J., & Moffatt, H. A. (1996). Comparative taphonomy of modern and Pleistocene corals. San Salvador, Bahamas, Palaios, 11, 57–63.

    Article  Google Scholar 

  • Greenstein, B. J., & Pandolfi, J. M. (2003). Taphonomic alteration of reef corals: Effects of reef environment and coral growth form II: The Florida keys. Palaios, 18, 495–509.

    Article  Google Scholar 

  • Greenstein, B. J., Curran, H. A., & Pandolfi, J. M. (1998). Shifting ecological baselines and the demise of Acropora cervicornis in the Western Atlantic and Caribbean Province: A Pleistocene perspective. Coral Reefs, 17, 249–261.

    Article  Google Scholar 

  • Halley, R. B., & Hudson, J. H. (2007). Fidelity of annual growth in Montastrea faveolata and the recentness of coral bleaching in Florida. In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 126–160). New York: Springer.

    Google Scholar 

  • Halley, R. B., & Yates, K. K. (2000). Will reef sediments buffer corals from increased global CO2? 9th international coral reef symposium, Bali, Abstract.

    Google Scholar 

  • Harper, E. M., & Skelton, P. W. (1993). The Mesozoic marine revolution and epifaunal bivalves. Scripta Geologica (Special Issue), 2, 127–153.

    Google Scholar 

  • Hay, M. E. (1984). Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology, 65, 446–454.

    Article  Google Scholar 

  • Highsmith, R. C. (1980). Geographic patterns in coral bioerosion: A productivity hypothesis. Journal of Experimental Marine Biology and Ecology, 46, 177–196.

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., & Xiaosu, D. (Eds.). (2001). IPCC third assessment report: Climate change 2001: The scientific basis. UK: Cambridge University Press. 944 pp.

    Google Scholar 

  • Hubbard, D. K. (1992). Hurricane-induced sediment transport in open-shelf tropical systems; an example from St. Croix, U.S. Virgin Islands. Journal of Sedimentary Research, 62, 946–960.

    Google Scholar 

  • Hubbard, D. K. (2006). Coral growth versus reef accretion: Problems of scale, taphonomy and perception. Geological Society of America Abstracts with Programs, 38(4), 16.

    Google Scholar 

  • Hubbard, D. K., Burke, R. B., & Gill, I. P. (1986). Styles of reef accretion along a steep, shelf-edge reef, St. Croix, U.S. Virgin Islands. Journal of Sedimentary Research, 56, 848–861.

    Google Scholar 

  • Hubbard, D. K., Miller, A. I., & Scaturo, D. (1990). Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, US Virgin Islands): Applications to the nature of reef systems in the fossil record. Journal of Sedimentary Petroleum, 60, 335–360.

    Google Scholar 

  • Hughes, T. P. (1994). Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science, 265, 1547–1551.

    Article  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connelly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.

    Article  Google Scholar 

  • Humphrey, J. D., Ransom, K. L., & Matthews, R. K. (1986). Early meteoric diagenetic control of upper Smackover production, Oaks Field, Louisiana. American Association of Petroleum Geologists Bulletin, 70, 70–85.

    Google Scholar 

  • Jackson, J. B. C. (1983). Biological determinants of present and past sessile animal distributions. In M. Tevesz & P. W. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 39–120). New York: Plenum.

    Google Scholar 

  • Jackson, J. B. C. (1991). Adaptation and diversity of reef corals. BioScience, 41, 475–482.

    Article  Google Scholar 

  • Jackson, J. B. C. (1992). Pleistocene perspectives of coral reef community structure. American Zoology, 32, 719–731.

    Google Scholar 

  • Jackson, J. B. C., & Hughes, T. P. (1985). Adaptive strategies of coral-reef invertebrates. American Science, 75, 265–274.

    Google Scholar 

  • Jackson, J. B. C., & McKinney, F. K. (1991). Ecological processes and progressive macroevolution of marine clonal benthos. In R. M. Ross & W. D. Allmon (Eds.), Causes of evolution (pp. 173–209). Chicago: University of Chicago Press.

    Google Scholar 

  • Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.

    Article  Google Scholar 

  • James, N. P., Ginsburg, R. N., Marszalek, D. S., & Choquette, P. W. (1976). Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. Journal of Sedimentary Petroleum, 46, 523–544.

    Google Scholar 

  • Kayanne, H., Kudo, S., Hata, H., Yamano, H., Nozaki, K., Kato, K., Negishi, A., Saito, H., Akimoto, F., & Kimoto, H. (2003). Integrated monitoring system for coral reef water pCO2, carbonate system and physical parameters. Proceedings 9th international coral reef symposium, Bali.

    Google Scholar 

  • Kendall, G. S. C., & Schlager, W. (1981). Carbonates and relative changes in sea level. In M. B. Cita & W. B. F. Ryan (Eds.), Carbonate platforms of the passive-type continental margins, present and past. Marine Geology 44, 181–212).

    Google Scholar 

  • Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (Vol. 560, pp. 115–209). New York: Plenum.

    Google Scholar 

  • Kleypas, J. A. (1997). Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography, 12, 533–545.

    Article  Google Scholar 

  • Kleypas, J. A. (2007). Constraints on predicting coral reef response to climate change. In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 386–424). New York: Springer.

    Chapter  Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, D., & Opdyke, B. N. (1999). Geochemical consequences of increased atmospheric CO2 on coral reefs. Science, 284, 118–120.

    Article  Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W., & Gattuso, J.-P. (2001). The future of coral reefs in an age of global change. International Journal of Earth Sciences, 90, 426–437.

    Article  Google Scholar 

  • Krumm, D. K., & Jones, D. S. (1993). A new coral-bivalve association (Actinastrea-Lithophaga) from the Eocene of Florida. Journal of Paleontology, 67, 945–951.

    Google Scholar 

  • Liddell, W. D., & Ohlhorst, S. L. (1988). Hard substrata community patterns, 1–120 m, North Jamaica. Palaios, 3, 413–423.

    Article  Google Scholar 

  • Lightly, R. G. (1985). Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf. In C. Schniedermann & P. M. Harris (Eds.), Carbonate cements, SEPM 36 (pp. 123–151).

    Google Scholar 

  • Lindberg, D. R., & Dwyer, K. R. (1983). The topography, formation and mode of home depression of Collisella scabra (Gould) (Gastropoda: Acmaeidae). Veliger, 25, 229–234.

    Google Scholar 

  • Macintyre, I. G. (1985). Pre-burial and shallow-subsurface alteration of modem scleractinian corals. Palaeontography of America, 54, 229–244.

    Google Scholar 

  • Macintyre, I. G. (1988). Modern coral reefs of western Atlantic: New geological perspective. Bulletin of the American Association of Petroleum Geologists, 72, 1360–1369.

    Google Scholar 

  • Macintyre, I. G. (2007). Demise, regeneration, and survival of some western Atlantic reefs during the Holocene transgression. In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 181–200). New York: Springer.

    Chapter  Google Scholar 

  • Macintyre, I. G., & Marshall, J. F. (1988). Submarine lithification in coral reefs: Some facts and misconceptions, Sixth international coral reef congress, Townsville, Australia 1 (pp. 263–272). Townsville, Australia: Australian Institute of Marine Science.

    Google Scholar 

  • Matthews, R. K., & Frohlich, C. (1987). Forward modeling of bank-margin carbonate diagenesis. Geology, 15, 673–676.

    Article  Google Scholar 

  • McCall, J., Rosen, B. R., & Darrell, J. (1994). Carbonate deposition in accretionary prism settings: Early Miocene coral limestones and corals of the Makhran Mountain Range in southern Iran. Facies, 31, 141–178.

    Article  Google Scholar 

  • Meyer, D. M., Bries, J. M., Greenstein, B. J., & Debrot, A. O. (2003). Preservation of an in situ reef framework in regions of low hurricane frequency: Pleistocene of Curacao and Bonaire, southern Caribbean. Lethaia, 36, 273–286.

    Article  Google Scholar 

  • Nakićenović, N., & Swart, R. (Eds.). (2000). Emission scenarios 2000, Special Report of the IPCC. Cambridge: Cambridge University Press. 570 pp.

    Google Scholar 

  • Palmer, T. J., Hudson, J. D., & Wilson, M. A. (1988). Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature, 335, 809–810.

    Article  Google Scholar 

  • Pandolfi, J. M. (1996). Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: Constancy during global change. Paleobiology, 22, 152–176.

    Google Scholar 

  • Pandolfi, J. M. (2002). Coral community dynamics at multiple scales. Coral Reefs, 21, 13–23.

    Google Scholar 

  • Pandolfi, J. M., & Greenstein, B. J. (1997). Preservation of community structure in death assemblages of deep water corals. Limnology and Oceanography, 42, 1505–1516.

    Article  Google Scholar 

  • Pandolfi, J. M., & Jackson, J. B. C. (2001). Community structure in Pleistocene coral reefs of Curacao reefs, Netherlands Antilles. Ecological monographs, 72, 49–67.

    Google Scholar 

  • Pandolfi, J. M., & Jackson, J. B. C. (2007). Broad-scale patterns in Pleistocene coral reef communities from the Caribbean: Implications for ecology and management. In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 201–236). New York: Springer.

    Chapter  Google Scholar 

  • Pandolfi, J. M., & Minchin, P. R. (1995). A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Magang Lagoon, Papua New Guinea. Palaeoceanography, Palaeoclimatology, Palaeoecology, 119, 321–341.

    Article  Google Scholar 

  • Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. J., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301, 955–958.

    Article  Google Scholar 

  • Perry, C. (2001). Storm-induced coral rubble deposition: Pleistocene records of natural reef disturbance and community response. Coral Reefs, 20, 171–183.

    Article  Google Scholar 

  • Peterson, C. H. (1976). Relative abundance of living and dead molluscs in two Californian lagoons. Lethaia, 9, 137–148.

    Article  Google Scholar 

  • Pleydell, S. M., & Jones, B. (1988). Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman. Journal of Paleontology, 62, 348–367.

    Google Scholar 

  • Precht, W. B., & Aronson, R. B. (1997). Compositional changes in reef sediments related to changes in coral reef community structure. AAPB Bulletin, 81, 1561.

    Google Scholar 

  • Reigl, B. (2007). Extreme climatic events and coral reefs: How much short-term threat from global change? In R. G. Aronson (Ed.), Geological approaches to coral reef ecology, ecological studies 192 (pp. 315–341). New York: Springer.

    Chapter  Google Scholar 

  • Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., & Morel, F. M. M. (2001). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364–368.

    Article  Google Scholar 

  • Ries, J. G. (2006). Aragonite algae in calcite seas: Effect of seawater Mg/Ca on codiacean biomineralization. Journal of Sedimentary Research, 76, 515–523.

    Article  Google Scholar 

  • Ries, J. G., Stanley, S. M., & Hardie, L. A. (2004). Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology, 37, 525–528.

    Google Scholar 

  • Rosen, B. R. (1984). Reef coral biogeography and climate through the Late Cainozoic: just islands in the sun or a critical pattern of islands? Geology Journal Special Issue, 11, 201–262.

    Google Scholar 

  • Rosen, B. R. (1986). Modular growth and form of corals: A matter of metamers? Philosophical Transactions of the Royal Society, London, B313, 115–142.

    Article  Google Scholar 

  • Rosen, B. R., & Turnsek, D. (1989). Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoir of the Association of Australasian Paleontologists, 8, 355–370.

    Google Scholar 

  • Sandberg, P. A. (1983). An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.

    Article  Google Scholar 

  • Savazzi, E. (1982). Commensalism between boring mytilid bivalves and a soft bottom coral in the upper Eocene of Northern Italy. Palaontologisches Zeitschrift, 56, 165–175.

    Google Scholar 

  • Scoffin, T. P. (1972). Fossilization of Bermuda patch reefs. Science, 178, 1280–1282.

    Article  Google Scholar 

  • Scoffin, T. P. (1987). Introduction to carbonate sediments and rocks. New York: Chapman & Hall/Methuen. 272 pp.

    Google Scholar 

  • Scoffin, T. P. (1992). Taphonomy of reefs: A review. Coral Reefs, 11, 57–77.

    Article  Google Scholar 

  • Scoffin, T. P., & Hendry, M. D. (1984). Shallow-water sclerosponges on Jamaican reefs and a criterion for recognition of hurricane deposits. Nature, 307, 728–729.

    Article  Google Scholar 

  • Signor, P. W., III, & Brett, C. E. (1984). The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology, 10, 229–245.

    Google Scholar 

  • Smith, A. B. (1984). Echinoid palaeobiology. London: Allen & Unwin.

    Google Scholar 

  • Staff, G. M., Stanton, R. J., Jr., Powell, R. N., & Cummins, H. (1986). Time-averaging, taphonomy and their impact on paleocommunity reconstruction: Death assemblages in Texas bays. Geological Society of American Bulletin, 97, 428–443.

    Article  Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology Palaeoecology, 144, 3–19.

    Article  Google Scholar 

  • Stanley, G. D., & Swart, P. W. (1995). Evolution of the coral-zooxanthellae symbiosis during the Triassic: A geochemical approach. Paleobiology, 21, 179–199.

    Google Scholar 

  • Steneck, R. S. (1982). Adaptive trends in the ecology and evolution of crustose coralline algae (Rhodophyta, Corallinaceae). Ph.D. Dissertation, The John Hopkins University, Baltimore, MD, USA.

    Google Scholar 

  • Steneck, R. S. (1983). Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology, 9, 44–61.

    Google Scholar 

  • Steneck, R. S. (1985). Adaptations of crustose coralline algae to herbivory: Patterns in space and time. In D. F. Toomey & M. H. Nitecki (Eds.), Paleobiology: Contemporary research and applications (pp. 352–366). Berlin: Springer.

    Google Scholar 

  • Steneck, R. S. (1988). Herbivory on coral reefs: A synthesis, Proceedings of the 6th international coral reef symposium 1 (pp. 37–49), Townsville, Queensland.

    Google Scholar 

  • Steuber, T. (2002). Plate tectonic control on the evolution of Cretaceous platform-carbonate production. Geology, 30, 259–262.

    Article  Google Scholar 

  • Suzuki, A., & Kawahata, H. (1999). Partial pressure of carbon dioxide in coral reef lagoon waters: Comparative study of atolls and barrier reefs in the Indo-Pacific Oceans. Journal of Oceanography, 55, 731–745.

    Article  Google Scholar 

  • Tanner, J. E., Hughes, T. P., & Connell, J. H. (1994). Species co-existence, keystone species, and succession: A sensitivity analysis. Ecology, 75, 2204–2219.

    Article  Google Scholar 

  • Taylor, P. D., & Todd, J. A. (2001). Bioimmuration. In D. E. G. Briggs & P. R. Crowther (Eds.), Paleobiology II (pp. 285–289). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Thayer, C. W. (1983). Sediment-mediated biological disturbance and the evolution of marine benthos. In M. Tevesz & P. W. McCall (Eds.), Biotic interactions in recent and fossil Benthic communities (pp. 480–625). New York: Plenum.

    Google Scholar 

  • Tunnicliffe, V. (1981). Breakage and propagation of the stony coral Acropora cervicornis. Proceedings of the National Academic Science USA, 78, 2427–2431.

    Article  Google Scholar 

  • Van Belle, R. A. (1977). Sur las classification des Polyplacophora. III. Classification systematic des Subterenochitonidae et des Ischnochitinonidae (Neoloricata: Chitonina). Info Societe Belgique Malacologique, 5, 15–40.

    Google Scholar 

  • Vermeij, G. J. (1987). Evolution and escalation: An ecological history of life. Princeton: Princeton University Press. 527 pp.

    Google Scholar 

  • Wilson, P. A., & Opdyke, B. N. (1996). Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24, 555–558.

    Article  Google Scholar 

  • Wilson, M. A., & Palmer, T. J. (1992). Hardgrounds and hardground faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications, 9, 1–131.

    Google Scholar 

  • Wood, R. (1999). Reef evolution. Oxford: Oxford University Press. 414 p.

    Google Scholar 

  • Wood, R., Yu Zhuravlev, A., & Debrenne, F. (1992). Functional biology and ecology of Archaeocyatha. Palaios, 7, 131–156.

    Article  Google Scholar 

  • Wood, R. A., Grotzinger, J. P., & Dickson, J. A. D. (2002). Proterozoic modular biomineralized metazoan from the Nama Group. Science, 296, 2383–2386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wood, R. (2011). Taphonomy of Reefs Through Time. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_10

Download citation

Publish with us

Policies and ethics