Skip to main content

IPM Potentials of Microbial Pathogens and Diseases of Mites

  • Chapter
  • First Online:
Integrated Management of Arthropod Pests and Insect Borne Diseases

Part of the book series: Integrated Management of Plant Pests and Diseases ((IMPD,volume 5))

Abstract

An overview is given of diseases in mites, caused by infectious microorganisms. Many pathogens play an important role in the regulation of natural populations of mite populations and are for this reason subject of research on the feasibility to develop such pathogens to biological control agents. Several examples are given of successful application of pathogens for the control of mite pests, but also failures are discussed. Most studies concern fungal pathogens of tetranychids and eriophyids; some of these fungi are possible candidates for biological control agent of species of noxious mites. An interesting group of pathogens form the intracellular symbionts: bacteria that may cause unusual effects in their hosts, such as parthenogenesis, feminization, male killing and incompatibilities. This group of bacteria is present in many invertebrates species and are presently widely studied as new molecular techniques have become available that make detection of such symbionts possible. Attention is also given to quality control of beneficial mites that are being used in integrated control programs. Beneficial mites, as e.g. predatory mites, may also be infected by microorganisms (bacteria, viruses, microsporidia), resulting in poor performance of the predator. Prospects for the application of pathogens in IPM systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agudela-Silva, P. (1986). A species of Triplosporium (Zygomycetes: Entomophthorales) infecting Mononychellus progressivus (Acari: Tetranychidae) in Venezuela. Florida Entomologist, 69, 444–446.

    Article  Google Scholar 

  • Aksoy, H. M., Ozman-Sullival, S. K., Ocal, H., Celik, N., & Sullivan, G. T. (2008). The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 46, 223–230.

    Article  Google Scholar 

  • Alves, S. B., Tamai, M. A., & Lopes, R. B. (1998). Avaliação de Beauveria bassiana (Bals.) Vuill. para controle de Tetranychus urticae Koch em crisântemo. Abstracts 17th Brazilian Congress of Entomology, Rio de Janeiro, 1068 (abstract).

    Google Scholar 

  • Baker, J. R., & Neunzig, H. N. (1968). Hirsutella thompsonii as a fungus parasite of the blueberry mite. Journal of Economic Entomology, 61, 1117–1118.

    Google Scholar 

  • Bałazy, S. (1973). A review of entomopathogenic species of the genus Cephalosporium Corda (Mycota, Hyphomycetales). Bulletin de la Société des Amis des Sciences et des Lettres de Poznań, 14101–137.

    Google Scholar 

  • Bałazy, S., & Wiśniewski, J. (1982a). Two species of entomopathogenic fungi on the myrmecophilic mite Trachyuropoda coccinea (Michael, 1891) (Acari: Uropodina). Bulletin de l’Academie Polonaise des Sciences, Série Sciences Biologiques, 30, 81–84.

    Google Scholar 

  • Bałazy, S., & Wiśniewski, J. (1984). Records on some lower fungi occurring on mites (Acarina) from Poland. Acta Mycologica, 20, 159–172.

    Google Scholar 

  • Bałazy, S., & Wiśniewski, J. (1989). Pathogene Pilze bei Milben. Mikrokosmos, 78, 299–304.

    Google Scholar 

  • Bałazy, S., Wiśniewski, J., & Kaczmarek, S. (1987). Some noteworthy fungi occurring on mites. Bulletin of the Polish Academy of Sciences, Biological Sciences, 35, 199–224.

    Google Scholar 

  • Bałazy, S., Mietkiewski, R., Tkaczuk, C., Wegensteiner, R., & Wrzosek, M. (2008). Diversity of acaropathogenic fungi in Poland and other European countries. Experimental and Applied Acarology, 46, 53–70.

    Article  Google Scholar 

  • Bartkowski, J., Odindo, M. O., & Otieno, W. A. (1988). Some fungal pathogens of the cassava green spider mite Mononychellus spp. (Tetranychidae) in Kenya. Insect Science and its Application, 9, 457–459.

    Google Scholar 

  • Becnel, J. J., Jeyaprakash, A., Hoy, M. A., & Shapiro, A. (2002). Morphological and molecular characterization of a new microsporidian species from the predatory mite Metasiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 79, 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Beerling, E. A. M., Rouppe van der Voort, J. N. A. M., & Kwakman, P. (1993). Microsporidiosis in mass rearings of predatory mites: Development of a detection method. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (NEV, Amsterdam), 4, 199–204.

    Google Scholar 

  • Beerling, E. A. M., & Van der Geest, L. P. S. (1991a). Microsporidiosis in mass-rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae). Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (NEV, Amsterdam), 2, 157–162.

    Google Scholar 

  • Beerling, E. A. M., & Van der Geest, L. P. S. (1991b). A microsporidium (Microspora: Pleistophoridae) in mass-rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae): Analysis of a problem. IOBC/WPRS Bulletin, 14, 5–8.

    Google Scholar 

  • Berliner, E. (1915). Ueber die Schlaffsucht der Mehlmottenraupe (Ephestia kuhniella Zell) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie, 2, 29–56.

    Article  Google Scholar 

  • Bjørnson, S. E. (1998). Morphology and pathology of the predatory mite, Phytoseiulus persimilis Athias- Henriot (Acari: Phytoseiidae). PhD Thesis, University of Alberta, Edmonton, AB, Canada, 232pp.

    Google Scholar 

  • Bjørnson, S. (2008). Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological control. Experimental and Applied Acarology, 46, 299–306.

    Article  Google Scholar 

  • Bjørnson, S., & Keddie, B. A. (1999). Effects of Microsporidium phytoseiuli (Microspora) on the performance of the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 15, 153–161.

    Article  Google Scholar 

  • Bjørnson, S., Steiner, M. Y., & Keddie, B. A. (1996). Ultrastructure and pathology of Microsporidium phytoseiuli n. sp. infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 68, 223–230.

    Article  Google Scholar 

  • Bjørnson, S., Steiner, M. Y., & Keddie, B. A. (1997). Birefringent crystals and abdominal discoloration of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 69, 85–91.

    Article  Google Scholar 

  • Boekhout, T., Theelen, B., Houbraken, J., Robert, V., Scorzetti, G., & Gafni, A., et al. (2003). Novel anamorphic fungi belonging to the Ustilagomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp nov. International Journal of Systematic and Evolutionary Microbiology, 53, 1655–1664.

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg, R. L., & Kennedy, G. G. (1982). Relationship of Neozygites floridana (Entomophthorales: Entomophthoraceae) to twospotted spider mite (Acari: Tetranychidae) populations in field corn. Journal of Economic Entomology, 75, 691–694.

    Google Scholar 

  • Brandenburg, R. L., & Kennedy, G. G. (1983). Interactive effects of selected pesticides on the twospotted spider mite and its fungal pathogen Neozygites floridana. Entomologia Experientia et Applicta, 34, 240–244.

    Article  CAS  Google Scholar 

  • Breeuwer, J. A. J., & Jacobs, G. (1996). Wolbachia: Intracellular manipulators of mite reproduction. Experimental and Applied Acarology, 20, 421–434.

    Article  CAS  Google Scholar 

  • Bridge, P. D., & Worland, M. R. (2004). First report of and entomophthoralean fungus on an arthropod host in Antarctica. Polar Biology, 27, 190–192.

    Article  Google Scholar 

  • Bridge, P. D., & Worland, M. P. (2008). An association between the Antarctic mite Alaskozetes antarcticus and an entomophthoralean fungus of the genus Neozygites. Experimental and Applied Acarology, 46, 43–52.

    Article  CAS  Google Scholar 

  • Bugeme, D. M., Maniania, N. K., Knapp. M., & Boga, J. J. (2008). Effect of temperature on virulence of Beauveris bassiana and Metarhizium anissopliae solates to Tetranychus evansi, Experimental and Applied Acarology, 46, 275ȓ285.

    Article  Google Scholar 

  • Cabrera, R. I, Caceras, I., & Dominguez, D. (1987). Estudios de dos especos de Hirsutella y sus hospedantes en el cultivo de la guayaba, Psidium guajava. Agrotecnia de Cuba, 19, 29–34.

    Google Scholar 

  • Cabrera, R. I., & Domínguez, D. (1987a). Hirsutella nodulosa y Hirsutella kirchner: Dos nuevos hongos patógenos del ácaro del moho, Phyllopcoptruta oleivora. Ciencia y Tecnica en la Agricultura, Proteccion de Plantas, 10, 139–142.

    Google Scholar 

  • Cabrera, R. I., & Domínguez, D. (1987b). El hongo Hirsutella nodulosa, nuevo parásito para el ácaro del cocotero Eriophyes guerreronis. Ciencia y Tecnica en la Agricultura, Cítricos y Otros Frutales, 10, 41–51.

    Google Scholar 

  • Cabrera, R. I., & McCoy, C. W. (1984). El acaro Vasates detructor nievo hospedero del hongo Hirsutella thompsonii. Ciencia y Tecnica en la Agricultura, Proteccion de Plantas, 7, 69–79.

    Google Scholar 

  • Carner, G. R. (1976). A description of the life cycle of Entomophthora sp. in the two-spotted spider mite. Journal of Invertebrate Pathology, 28, 245–254.

    Article  Google Scholar 

  • Carner, G. R., & Carnerday, T. D. (1968). Field and laboratory investigations with Entomophthora fresenii, a pathogen of Tetranychus spp. Journal of Economic Entomology, 61, 956–959.

    Google Scholar 

  • Cehrnin, L., Gafni, A., Mozes-Koch, R., Gerson, U., & Sztejnberg, A. (1997). Chitolytic activity of the acaropathogenic fungi Hirsutella thompsonii and Hirsutella necatrix. Canadian Journal of Microbiology, 43, 440–446.

    Article  Google Scholar 

  • Chagas, C. M., Kitajima, E. W., & Rodrigues, J. C. V. (2003). Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Experimental and Applied Acarology, 30, 203–213.

    Article  CAS  Google Scholar 

  • Chandler, D., Davidson, G., Pell, J. K., Ball, B. V., Shaw, K., & Sunderland, K. D. (2000). Fungal biocontrol of Acari. Biocontrol Science and Technology, 10, 357–384.

    Article  Google Scholar 

  • Chapman, M. H., & Hoy, M. A. (1991). Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two-spotted spider mite (Tetranychus urticae Koch) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae). Journal of Applied Entomology, 11, 147–154.

    Article  Google Scholar 

  • Chen, Y., Pettis, J. S., Evans, J. D., Kramer, M., & Feldlaufer, M. F. (2004). Transmission of Kashmir bee virus by the ectoparasitic mite Varroa Destructor, Apidologie, 35, 441–448.

    Article  Google Scholar 

  • Chernov, K. S. (1981). Transmission of mycoses, an aspect of Varroa infestations. Byulletin Vsesoyuznogo Instituta Eksparimental noi Veterinarii, 41, 59–60 (in Russian).

    Google Scholar 

  • Chigira, A., & Miura, K. (2005). Detection of candidatus Cardinium’ bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Experimental and Applied Acarology, 37, 107–116.

    Article  Google Scholar 

  • Dale, C., & Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their hosts. Cell, 126, 453–465.

    Article  PubMed  CAS  Google Scholar 

  • De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.

    Article  CAS  Google Scholar 

  • Delalibera, I., De Moraes, G. J., & Sosa Gomez, D. R. (1999). Epizootias de Neozygites floridana (Zygomycetes, Entomophthorales) e dinâmica populacional de ácaros fitoseídos predadores de Mononychellus tanajoa (Acari, Phytoseiidae e Tetranychidae) na Bahia. Revista Brasileira de Entomologia, 43, 287–291.

    Google Scholar 

  • Delalibera, I., Hajek, A. E., & Humber, R. A. (2004). Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia, 96, 1002–1009.

    Article  Google Scholar 

  • Delalibera, I., Sosa Gomez, D. R., De Moraes, G. J., De Alencar, J. A., & Farias Araujo, W. (1992). Infection of Mononychellus tanajoa (Acari: Tetranychidae) by the fungus Neozygites sp. (Entomophthorales) in northeastern Brazil. Florida Entomologist, 75, 145–147.

    Article  Google Scholar 

  • De Luna, C. J., Valente Moro, C., Guy, J. H., Zenner, L., & Sparagano, O. A. E. (2009). Endosymbiotic bacteria living inside the poultry red mite Dermanyssus gallinae). Experimental and Applied Acarology, 48, 105–113.

    Article  Google Scholar 

  • De Moraes, G. J., & Delalibera, I. (1992). Specificity of a strain of Neozygites sp. (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Experimental and Applied Acarology, 14, 89–94.

    Article  Google Scholar 

  • Dick, G. L., Buschman, L. L., & Ramoska, W. A. (1992). Description of a species of Neozygites infecting Oligonychus pratensis in the western great plains of the United States. Mycologia, 84, 729–738.

    Article  Google Scholar 

  • Dissanaike, A. S. (1958). Experimental infection of tapeworms and oribatid mites with Nosema helminthorum. Experimental Parasitology, 7, 306–318.

    Article  PubMed  CAS  Google Scholar 

  • Dresner, E. (1949). Culture and use of entomogenous fungi for the control of insects. Contributions from Boyce Thompson Institute, 15, 319–335.

    Google Scholar 

  • Eken, C., & Hayat, R. (2008) Preliminary evaluation of Cladosporium cladosporioides (Fresen.) de Vries in laboratory conditions, as a potential candidate for biocontrol of Tetranychus urticae Koch. World Journal of Microbiology and Biotechnology, 25, 489–492.

    Article  Google Scholar 

  • Elliot, S. L. (1998). Ecology and epizootiology of Neozygites floridana, a pathogen of the cassava green mite. PhD Dissertation, Imperial College, Silwood Park, UK, 177pp.

    Google Scholar 

  • Elliot, S. L., De Moraes, G. J., Delalibera, I., da Silva, C. A. D., Tamai, M. A., & Mumford, J. D. (2000). Potential of the mite-pathogenic fungus Neozygites floridana (Entomophthorales: Neozygitaceae) for control of the cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Bulletin of Entomological Research, 90, 1–11.

    Article  Google Scholar 

  • Elliot, S. L., De Moraes, G. J., & Mumford, J. D. (2008). Failure of the mite–pathogenic fungus Neozygites tanajoae and the predatory mite Neoselulus idaeus to control a population of the cassava green mite, Mononychellus tanajoa. Experimental and Applied Acarology, 46, 211–222.

    Article  Google Scholar 

  • Enigi, M., & Schausberger, P. (2007). Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoiseiid mites and associated prey. Experimental and Applied Acarology, 42, 75–85.

    Article  Google Scholar 

  • Erhardová, B. (1955). Prvé nálezy Gregarin u roztocu. Ceskoslovenska Parasitologia, 2, 35–37.

    Google Scholar 

  • Fisher, F. E. (1950). Two new species of Hirsutella Patouillard. Mycologia, 42, 13–16.

    Article  Google Scholar 

  • Fisher, F. E. (1951). An Entomophthora attacking citrus red mite. The Florida Entomologist, 34, 83–88.

    Article  Google Scholar 

  • Furtado, I. P., De Moraes, G. J., & Keller, S. (1996). Infection of Euseius citrifolius (Acari: Phytoseiidae) by an entomophthoralean fungus in Brazil. Rev. Ecossistema, 21, 85–86.

    Google Scholar 

  • Gams, W. (1971) Cephalosporium-Artige Schimmelpilze (Hyphomycetes). Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Gardner, W. A., Oetting, R. D., & Storey, G. K. (1982). Susceptibility of the two-spotted spider mite, Tetranychus urticae Koch, to the fungal pathogen Hirsutella thompsonii Fisher. The Florida Entomologist, 65, 458–465.

    Article  Google Scholar 

  • Gerson, U., Gafni, A., Paz, Z., & Sztejnberg, A. (2008). A tale of three acaropathogenic fungi in Israel: Hirsutella, Maira and Acaromyces. Experimental and Applied Acarology, 46, 183–194.

    Article  CAS  Google Scholar 

  • Gerson, U., Kenneth, R., & Muttath, T. I. (1979). Hirsutella thompsonii, a fungal pathogen of mites. II. Host-pathogen interactions. Annals of Applied Biology, 91, 29–40.

    Article  Google Scholar 

  • Gomi, K., Gotoh, T., & Noda, H. (1997). Wolbachia having no effect on reproductive incompatibility in Tetranychus Kanzawai Kishida (Acari: Tetranychidae). Applied Entomology and Zoology, 32, 485–490.

    Google Scholar 

  • Gotoh, T., Abe, T., Kurihara, A., & Suzuki, M. (1995). Genetic incompatibility in local populations of the spider mite, Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Applied Entomology and Zoology, 30, 361–368.

    Google Scholar 

  • Gotoh, T., Gomi, K., & Nagata, T. (1999a). Incompatibility and host plant differences among populations of Tetranychus kanzawai Kishida (Acari: Tetranychidae). Applied Entomology and Zoology, 34, 551–561.

    Google Scholar 

  • Gotoh, T., Noda, H., & Ito, S. (2006). Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity, 9813–20.

    Article  PubMed  CAS  Google Scholar 

  • Gotoh, T., Sugasawa, J., & Nagata, T. (1999b). Reproductive compatibility of the two-spotted spider mite (Tetranychus urticae) infected with Wolbachia. Entomological Science, 2, 289–295.

    Google Scholar 

  • Groot, V. M., & Breeuwer, J. A. J. (2006). Cardinium synbionts induce haploid thelytoky in most clones if three closely related Brevipalpus species. Experimental and Applied Acarology, 39, 257–271.

    Article  Google Scholar 

  • Guo, Y. L., Zuo, G. S., Zhao, J. H., Wang, N. Y., & Jiang, J. W. (1993). A laboratory test on the toxicity of thuringiensin to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Chinese Journal of Biological Control, 9, 151–155.

    Google Scholar 

  • Hajek, A. E. (1997). Ecology of terrestrial fungal entomopathogens. Advances in Microbial Ecology, 15, 193–249.

    Google Scholar 

  • Hall, I. M., Hunter, D. K., & Arakawa, K. Y. (1971). The effect of the b-exotoxin fraction of Bacillus thuringiensis on the citrus red mite. Journal of Invertebrate Pathology, 18, 359–362.

    Article  CAS  Google Scholar 

  • Hall, R. A., Hussey, N. W., & Mariau, D. (1980). Results of a survey of biological control agents of the coconut mite Eriophyes guerreronis. Oleagineux, 35, 395–400.

    Google Scholar 

  • Hayes, S. F., & Burgdorfer, W. (1989). Interactions between rickettsial endocytobionts and their tick hosts. In W. Schwemmler & G. Gassner (Eds.), Insect endocytobiosis: Morphology, physiology, genetics, evolution. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Herrero-Galán, E., Lacadena, E., Martinez del Pozo, L., Boucias, D. G., Olmo, N., Oñadera, M., & Gavilanes, J. G. (2008). The insecticidal protein hirsutellin A from the mite pathogen Hirsutella thompsonii is a ribotoxin. Proteins, 72, 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Hess, R. T., & Hoy, M. A. (1982). Microorganisms associated with the spider mite predator Metaseiulus (Typhlodromus) occidentalis: Electron microscope observations. Journal of Invertebrate Pathology, 40, 98–106.

    Article  Google Scholar 

  • Hountondji, F. C. C. (2005). Classical microbial control of the cassava green mite. From individual behaviour to population dynamics. Ph.D. Dissertation, University of Amsterdam, The Netherlands, 150pp.

    Google Scholar 

  • Hountondji, F. C. C. (2008). Lessons from interactions within the cassava green mite fungal pathogen Neozygites tanajoae system and prospects for microbial control using Entomophthorales. Experimental and Applied Acarology, 46, 195–210.

    Article  Google Scholar 

  • Hoy, M. A., & Jeyaprakash, A. (2008). Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: Current and future analysis. Experimental and Applied Acarology, 46, 329–347.

    Article  Google Scholar 

  • Hoy, M. A., & Ouyang, Y.-L. (1987). Toxicity of b-exotoxin of Bacillus thuringiensis to Tetranychus pacificus and Metaseiulus occidentalis (Acari: Tetranychidae and Phytoseiidae). Journal of Economic Entomology, 80, 507–511

    CAS  Google Scholar 

  • Hughes, T. E. (1950). The physiology of the alimentary canal of Tyrophagus farinae. The Quarterly Journal of Microscopical Science, 91, 98–106.

    Google Scholar 

  • Humber, R. A. (1992). Collection of Entomopathogenic Fungi: Catalog of Strains 1992. Agricultural Research Service Publications, 110, 177.

    Google Scholar 

  • Humber, R. A., De Moraes, G. J., & Dos Santos, J. M. (1981). Natural infection of Tetranychus evansi (Acarina: Tetranychidae) by a Triplosporium sp. (Zygomycetes: Entomophthorales) in northeastern Brazil. Entomophaga, 26, 421–425.

    Article  Google Scholar 

  • Issi, I. V., & Lipa, J. (1968). Gurleya sokolovi sp.n., a microsporidian parasite of the water mite Limnochares aquatica (Linnaeus) (Acarina: Hydrachnellae), and a note on a gregarine infection in the same mite. Journal of Invertebrate Pathology, 10, 165–175.

    Article  Google Scholar 

  • Jaeniki, J., Polak, M., Fiskin, A., Helou, M., & Minhas, M. (2007). Interspecific transmission of endosymbiotic Spiroplasma by mites. Biology Letters, 3, 23–25.

    Article  CAS  Google Scholar 

  • James, D. G. (1994). Biological control of earth mites in pasture using endemic natural enemies (pp. 69–71). Proceedings of the 2nd National Workshop on Redlegged Earth Mite, Lucerne Flea and Blue Oat Mite. Rutherglen, Victoria, Australia.

    Google Scholar 

  • Johanowicz, D. L., & Hoy, M. A. (1996). Wolbachia in a predator-prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Annals of the Entomological Society of America, 89, 435–441.

    CAS  Google Scholar 

  • Jung, Y.-C., Mizuki, E., Akao, T., & Côté, J. C. (2007). Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. Journal of Applied Microbiology, 103, 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Kanga, L. H. B., James, R. R., & Boucias, D. G. (2002). Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor, a honey bee parasite. Journal of Invertebrate Pathology, 81, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Keller, S. (1997). The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia, 49, 118–146.

    Google Scholar 

  • Keller, S., & Wuest, J. (1983). Observations sur trois espèces de Neozygites (Zygomycetes: Entomophthoraceae). Entomophaga, 28, 123–134.

    Article  Google Scholar 

  • Kleespies, R. G., Radtke, J., & Bienefield, K. (2000). Virus-like particles found in the ectoparasitic bee mite Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology, 75, 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Klingen, I., Wærsted, G., & Westrum, K. (2008). Overwintering and prevalence of Neozygites floridana (Zygomycetes: Neozygitaceae) in hibernating females of Tetranychusurtcae (Acari: Tetranychidae) under cold climatic conditions in strawberries. Experimental and Applied Acarology, 46, 231–245.

    Article  Google Scholar 

  • Kondo, H., Maeda, T., & Tamada, T. (2003). Orchid fleck virus: Brevipalpus californicus mite transmission, biological properties and genome structure. Experimental and Applied Acarology, 30, 215–233.

    Article  Google Scholar 

  • Krieg, A. (1972). Über die Wirkung von Bacillus thuringiensis-Präparaten auf Spinnmilbe (Tetranychidae). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 45, 169–171.

    Google Scholar 

  • Kumar, P. L., Duncan, G. H., Robert, I. M., Jones, A. T., & Reddy, D. V. R. (2002). Cytopathology of Pigeonpea sterility mosaic virus in pigeonpea and Nicotiana benthamiana: Similarities with those of eriophyid mite-borne agents of undefined aetiology. Annals of Applied Biology, 140, 87–96.

    Article  Google Scholar 

  • Larsson, J. I. L. (1990). Description of a new microsporidium of the water mite Limnochares aquatica and establishment of the new genus Napamichum (Microspora, Thelohaniidae). Journal of Invertebrate Pathology, 55, 152–161.

    Article  Google Scholar 

  • Larsson, J. I. R., Steiner, M. Y., & Bjørnson, S. (1997). Intexta acarivora gen. et sp. n. (Microspora: Chytridiopsidae) – Ultrastructural study and description of a new microsporidian parasite of the forage mite Tyrophagus putrescentiae (Acari: Acaridae). Acta Prozoologica, 36, 295–304.

    Google Scholar 

  • Leatherdale, D. (1965). Fungi infecting rust and gall mites (Acarina: Eriophyidae). Journal of Invertebrate Pathology, 7, 325–328.

    Article  Google Scholar 

  • Leite, L. G., Smith, L, De Moraes, G. J., & Roberts, D. W. (2000). In vitro production of hyphal bodies of the mite pathogenic fungus Neozygites floridana. Mycologia, 92, 201–207.

    Article  Google Scholar 

  • Lewis, G. C., Heard, A. J., Brady, B. L., & Minter, D. W. (1981). Fungal parasitism of the eriophyid mite vector of rye grass mosaic virus. Proceedings of the 1981 British Crop Protection Conference on Pests and Diseases, pp. 109–111.

    Google Scholar 

  • Lighthart, B., Sewall, D., & Thomas, D. R. (1988). Effect of several stress factors on the susceptibility of the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), to the weak bacterial pathogen Serratia marcescens. Journal of Invertebrate pathology, 52, 33–42.

    Google Scholar 

  • Lipa, J. J. (1962). Nosema sperchoni n. sp. (Microspordia), a new parasitic protozoan from the water mite Sperchon sp. (Hydracarina, Acarina). Bulletin of the Polish Academy of Sciences, Biological Sciences, 20, 435–437.

    Google Scholar 

  • Lipa, J .J. (1971). Microbial control of mites and ticks. H. D. Burges & N. W. Hussey (Eds.). In H. D. Burges & N. W. Hussey (Eds.), Microbial control of insects and mites (pp. 357–373). New York: Academic Press.

    Google Scholar 

  • Lipa, J. J. (1982). Nosema euzeti sp. n. and Gregarine euzeti sp. n., two new protozoan parasites of a mite Euzetes seminulum (O. F. Miller) (Acarina, Oribatei). Acta Protozoologica, 21, 121–126.

    Google Scholar 

  • Liu, T. P. (1991). Virus-like particles in the tracheal mite Acarapis woodi (Rennie). Apidolologie, 22, 213–219.

    Article  Google Scholar 

  • Maimala, S., A. Tartar, A., Boucias, D., & Chandrapatya, A. (2002). Detection of the toxin hirsutellin A from Hirsutella thompsonii. Journal of Invertebrate Pathology, 80, 112–126.

    Article  PubMed  CAS  Google Scholar 

  • Maiti P. K., Bose, R., Bandyopadhyay, S., Bhattacharya, S., Dey, J. B., & Ray, A. (2004). Entomophthoromycosis in South Bengal (Eastern India): A 9 years study. Indian Journal of Pathology and Microbiology, 47, 295–297.

    Google Scholar 

  • Maketon, M., Orosz-Coghlan, P., & Sinprasert, J. (2008). Evaluation of Metarhizium anisopliae (Deuteromycota: Hyphomycetes) for control of broad mite Polyphagotarsonemus latus (Acari: Tarsonemidae) in mulberry. Experimental and Applied Acarology, 46, 157–167.

    Article  Google Scholar 

  • Malone, L. A., & McIvor, C. A. (1996). Use of nucleotide sequence data to identify a microsporidian pathogen of Pieris rapae (Lepidoptera, Pieridae). Journal of Invertebrate Pathology, 68, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Maniania, N. K., Bugeme, D. M., Wekesa, V. W., Delalibera, I., & Knapp, M., (2008). Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Experimental and Applied Acarology, 46, 259–274.

    Article  Google Scholar 

  • McCoy, C. W. (1981). Pest control by the fungus Hirsutella thompsonii. In H. D. Burges (Ed.). Microbial control of insects, mites and plant diseases (pp. 499–512), New York: Academic Press.

    Google Scholar 

  • McCoy, C. W. (1996). Pathogens of eriophyoids. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites – their biology, natural enemies and control (pp. 481–490). Amsterdam: Elsevier.

    Google Scholar 

  • McCoy, C. W., Hill, A. J., & Kanavel, R. F. (1975). A liquid medium for the large-scale production of Hirsutella thompsonii in submerged culture. Journal of Invertebrate Pathology, 19, 370–374.

    Article  Google Scholar 

  • McCoy, C. W., & Selhime, A. G. (1977). The fungus pathogen, Hirsutella thompsonii and its potential use for control of the citrus mite in Florida (Vol. 2, pp. 521–527). Proceedings of the International Citrus Congress, Murcia, Spain.

    Google Scholar 

  • McEnroe, W. D. (1961). Guanine excretion by the two-spotted spider mite (Tetranychus telarius (L.)). Annals of the Entomological Society of America, 54, 926–926.

    Google Scholar 

  • Meikle, W. G., Mercadier, G., Holst, N., & Girod, V. (2008). Impact of two treatments of formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Experimental and Applied Acarology, 46, 105–117.

    Article  Google Scholar 

  • Miętkiewski, R., & Bałazy, S. (2003). Neozygites abacaridis sp. nov. (Entomophthorales), a new pathogen of phytophagous mites (Acari, Eriophyidae). Journal of Invertebrate Pathology, 83, 223–229.

    Article  PubMed  Google Scholar 

  • Miętkiewski, R., Bałazy, S., & Tkaczuk, C. (2000). Mycopathogens of Mites in Poland - A Review. Biocontrol Science and Technology, 10, 459–465.

    Article  Google Scholar 

  • Mieţkiewski, R., Bałazy, S., & Van der Geest, L. P. S. (1993). Observations on a mycosis of spider mites (Acari: Tetranychidae) caused by Neozygites floridana in Poland. Journal of Invertebrate Pathology, 61, 317–319.

    Article  Google Scholar 

  • Milner, R. J. (1985). Neozygites acaridis (Petch) comb. nov.: An entomophthoralean pathogen of the mite, Macrocheles peregrinus, in Australia. Transactions of the British Mycological Society, 85, 641–647.

    Article  Google Scholar 

  • Minter, D. W., Brady, B. L., & Hall, R. A. (1983). Five Hyphomycetes isolated from eriophyid mites. Transactions of the British Mycological Society, 81, 455–471.

    Article  Google Scholar 

  • Moniez, R. 1887. Observations pour la r vision des Microsporidies. Comptes Rendus de l’Académies des Sciences, 104, 1312–1314.

    Google Scholar 

  • Moore-Landecker, E. (1996). Fundamentals of the Fungi, (4th ed., 574pp). Upper Sadle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Muma, M. H. (1955). Factors contributing to the natural control of citrus insects and mites in Florida. Journal of Economic Entomology, 48, 432–438.

    Google Scholar 

  • Munderloh, U. G., & Kurtti, T. J. (1995). Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Insect Molecular Biology, 3, 63–66.

    Google Scholar 

  • Nemoto, H., Kobayashi, M., & Takizawa, Y. (1975). Entomophthora floridana (Entomophthorales: Entomophthoraceae) attacking the sugi spider mite, Oligonychus hondoensis (Acari: Tetranychidae), in Japan. Applied Entomology and Zoology, 10, 90–95.

    Google Scholar 

  • Nyiira, Z. M. (1982). Cassava green mite: Its distribution and possible control (pp. 65–67). Root Crops in Africa: Proceedings of a Workshop held in Kigali, Ruanda, 23–27 November 1980. International Development Research Centre, Ottawa, Canada.

    Google Scholar 

  • Odongo, B., Odindo, M. O., Brownbridge, M., & Kumar, R. (1998). Comparative biological efficacy of Hirsutella thompsonii and Neoseiulus teke for cassava mite (Mononychellus tanajoa) suppression. Bioscience Technology, 8, 345–355.

    Google Scholar 

  • Oduor, G. I. (1995c). Abiotic factors and the epizootiology of Neozygites cf. floridana, a fungus pathogenic to the cassava green mite. PhD Dissertation, University of Amsterdam, 101pp.

    Google Scholar 

  • Oduor, G. I., De Moraes, G. J., Van der Geest, L. P. S., & Yaninek, J. S. (1996a). Production and germination of primary conidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperatures, humidities, and photoperiods). Journal of Invertebrate Pathology, 68, 213–222.

    Article  PubMed  Google Scholar 

  • Oduor, G. I., De Moraes, G. J., Van der Geest, L. P. S., & Yaninek, J. S. (1997a). The effect of pathogen dosage on the pathogenicity of Neozygites floridana (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Journal of Invertebrate Pathology, 70, 127–130.

    Article  PubMed  Google Scholar 

  • Oduor, G. I., De Moraes, G. J., Yaninek, J. S., & Van der Geest, L. P. S. (1995a). Effect of temperature, humidity and photoperiod on mortality of Mononychellus tanajoa (Acari: Tetranychidae) Infected by Neozygites cf. floridana (Zygomycetes: Entomophthorales). Experimental and Applied Acarology, 19, 571–579.

    Article  Google Scholar 

  • Oduor, G. I., Sabelis, M. W., Lingeman, R., De Moraes, G. J., & Yaninek, J. S. (1997b). Modelling fungal (Neozygites cf. floridana) epizootics in local populations of cassava green mite (Mononychellus tanajoa). Experimental and Applied Acarology, 21, 485–506.

    Article  Google Scholar 

  • Oduor, G. I., Yaninek, J. S., Van der Geest, L. P. S., & De Moraes, G. J. (1995b). Survival of Neozygites cf. floridana (Zygomycetes: Entomophthorales) in mummified cassava green mites and the viability of its primary conidia. Experimental and Applied Acarology, 19, 479–488.

    Article  Google Scholar 

  • Oduor, G. I., Yaninek, J. S., Van der Geest, L. P. S., & De Moraes, G. J. (1996b). Germination and viability of capilliconidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperature, humidity and light conditions). Journal of Invertebrate Pathology, 67, 267–278.

    Article  PubMed  Google Scholar 

  • Omoto, C., & McCoy, C. W. (1998). Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (Ash). Journal of Invertebrate Pathology, 72, 319–322.

    Article  PubMed  CAS  Google Scholar 

  • Ongus, J. R. (2006). Varroa destructor virus 1: A new picorna-like virus in Varroa mites as well as honey bees. Ph.D. Dissertation, Wageningen University, The Netherlands, 132pp.

    Google Scholar 

  • Ongus, J. R., Peters, D., Bonmatin, J. M., Bengsch, E., Vlak, J. M., & Van Oers, M. M. (2004). Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. Journal of General Virology, 853747–3755.

    Article  PubMed  CAS  Google Scholar 

  • Paliwal, Y. C. (1972). Brome mosaic virus infection in the wheat curl mite Aceria tulipae, a nonvector of the virus. Journal of Invertebrate Pathology, 20, 288–302.

    Article  Google Scholar 

  • Payne, J., Cannon, R. J. C., & Bagley, A. L. (1993). Bacillus thuringiensis isolates for controlling acarides (8pp). US Patent 5,211,946.

    Google Scholar 

  • Payne, J., Cannon, R. J. C., & Ralph, A. L. (1994). Bacillus thuringiensis isolates for controlling acarides (20pp). US Patent 5,350,576.

    Google Scholar 

  • Peña, J. E., Osborne, L. S., & Duncan, R. E. (1996). Potential of fungi as biocontrol agents of Polyphagotarsonemus latus (Acari: Tarsonemidae). Entomophaga, 41, 27–36.

    Article  Google Scholar 

  • Poinar, G. Jr., & Poinar, R. (1998). Parasites and pathogens of mites. Annual Reviews of Entomology, 43, 449–469.

    Article  CAS  Google Scholar 

  • Pukall, R., Schumann, P., Schütte, C., Gols, R., & Dicke, M. (2006). Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. International Journal of Systematic Evolutionary Microbiology, 56, 465–469.

    Article  CAS  Google Scholar 

  • Purrini, K. (1984). Two new coccidian parasites of the genus Adelina (Adeleidae, Coccidia) parasitizing oribatid mite Nothrus silvestris (Oribatei, Acarina) and springtail Neanura muscorum (Collembola, Apterygota) in forest soil. Archiv für Protistenkunde, 128, 99–107.

    Google Scholar 

  • Purrini, K., & Bäumler, W. (1976). Nosema ptyctimae n. sp., eine neue Mikrosporidie aus Rhysotritia ardua C. L. Koch (Fam. Phthiracaridae, Ptyctima, Acarina). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 49, 169–171.

    Article  Google Scholar 

  • Purrini, K., Bukva, V., & Bäumler, W. (1979). Sporozoen in Hornmilben (Oribatei, Acarina) aus Waldböden Süddeutschlands nebst Beschreibug von Gregarina postneri n.sp. und G. fuscozetis n. sp. (Gregarinida, Sprorozoa, Protozoa). Pedobiologia, 19, 329–339.

    Google Scholar 

  • Purrini, K., & Ormieres, R. (1981). Uber vier neue Eugregarinen-Arten (Eugregrarinida, Sporozoa) der Hornmilben (Oribatei, Acarina). Zoologische Beitraege, 27, 123–132.

    Google Scholar 

  • Purrini, K. & Weiser, J. (1981). Eight new microsporidian parasites of moss-mites (Oribatei, Acarina) in forest soil. Zeitschrift fuer Angewandte Entomologie, 91, 217–224.

    Google Scholar 

  • Putman, W. L. (1970). Occurrence and transmission of a virus disease of the European red mite, Panonychus ulmi. The Canadian Entomologist, 102, 305–321.

    Article  Google Scholar 

  • Putman, W. L., & Herne, D. H. C. (1966). The role of predators and other biotic agents in regulating the population density of phytophagous mites in Ontario peach orchards. The Canadian Entomologist, 98, 808–820.

    Article  Google Scholar 

  • Ramaseshiah, G. (1971). Occurrence of an Entomophthora on tetranychid mites in India. Journal of Invertebrate Pathology, 24, 218–223.

    Google Scholar 

  • Reed, D. K. (1981). Control of mites by non-occluded viruses. In H. D. Burges (Ed.), Microbial control of pests and plant Diseases 1970–1980 (pp. 427–432). New York: Academic Press.

    Google Scholar 

  • Reed, D. K., & Desjardins, P. R. (1978). Isometric virus-like particles from citrus red mites, Panonychus citri. Journal of Invertebrate Pathology, 31, 188–193.

    Article  Google Scholar 

  • Reed, D. K., & Hall, I. M. (1972). Electron microscopy of a rod-shaped non-inclusion virus infecting the citrus red mite, Panonychus citri. Journal of Invertebrate Pathology, 20, 272–278.

    Article  Google Scholar 

  • Rodrigues, J. C. V., Kitajima, E. W., Childers, C. C., & Chagas, C. M. (2003). Citrus leprosies virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on citrus in Brazil. Experimental and Applied Acarology, 30, 161–179.

    Article  CAS  Google Scholar 

  • Rombach, M. C. & Gillespie, A. T. (1988). Entomogenous Hyphomycetes for insect and mite control on greenhouse crops. Biocontrol News and Information, 9, 7–18.

    Google Scholar 

  • Royalty, R. N., Hall, F. R., & Taylor, R. A. J. (1990). Effects of thuringiensin on Tetranychus urticae (Acari: Tetranychidae) mortality, fecundity, and feeding. Journal of Economic Entomology, 83, 792–798.

    CAS  Google Scholar 

  • Saba, F. (1971). Population dynamics of some tetranychids in subtropical Florida (pp. 237–240). Proceedings 3rd International Congress of Acarology. Prague, The Hague, Junk.

    Google Scholar 

  • Saleh, S. M., Kelada, N. L., & Shader, N. (1991). Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia, 32, 257–260.

    Google Scholar 

  • Samish, M., & Řeháček, J. (1999). Pathogens and predators of ticks and their potential in biological control. Annual Review of Entomology, 44, 159–182.

    Article  PubMed  CAS  Google Scholar 

  • Sammataro, D., Gerson, U., & Needham, G. (2000). Parasitic mites of honey bees: Life history, implications and impact. Annual Reviews of Entomology, 45, 519–548.

    Article  CAS  Google Scholar 

  • Samson, R. A. (1981). Identification: Entomopathogenic deuteromycetes. In (H. D. Burges, (Ed.), Microbial control of pests and plant diseases 1970–1980 (pp. 93–106). New York: Academic Press.

    Google Scholar 

  • Samson, R. A., & McCoy, C. W. (1982). A new fungal pathogen of the scavenger mite, Tydeus gloveri. Journal of Invertebrate Pathology, 40, 216–220.

    Article  Google Scholar 

  • Sanassi, A., & Amirthavalli, S. (1970). Infection of the velvet mite, Thrombidium gigas by Aspergillus flavus. Journal of Invertebrate Pathology, 16, 54–56.

    Article  Google Scholar 

  • Sanassi, A., & Oliver, J. H. (1971). Integument of the velvet-mite, Dinothrombium giganteum, and histopathological changes caused by the fungus Aspergillus flavus. Journal of Invertebrate Pathology, 17, 354–365.

    Article  Google Scholar 

  • Schütte, C. (2006). A novel bacterial disease of the predatory mite Phytoseiulus persimilis: Disease syndrome, disease transmission and pathogen isolation. Ph.D. dissertation. Wageningen University, The Netherlands, 208pp.

    Google Scholar 

  • Schütte, C., & Dicke, M. (2008). Verified and potential pathogens of predatory mites (Acari: Phytoseiidae). Experimental and Applied Acarology, 46, 307–328.

    Article  Google Scholar 

  • Selhime, A. G., & Muma, M. H. (1966). Biology of Entomophthora floridana attacking Eutetranychus banksi. The Florida Entomologist, 49, 161–168.

    Article  Google Scholar 

  • Shaw, J. G., Chambers, D. L., & Tashiro, H. (1968). Introducing and establishing the noninclusion virus of the citrus red mite in citrus groves. Journal of Economic Entomology, 61, 1352–1355.

    Google Scholar 

  • Shaw, J. G., Moffitt, C., & Sciven, G. T. (1967). Biotic potential of phytoseiid mites fed on virus-infected citrus red mites. Journal of Economic Entomology, 60, 1751–1752.

    Google Scholar 

  • Shen, M., Yang X., Cox-Foster, D., & Cui, L. (2005). The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Shi, W. B., Feng, M. G., & Liu, S. S. (2008). Sprays of emulsifiable Beauveria bassiana forkulation are ovcidal towards Tetranychus urticae (Acari: Tetranychidae) at various regimes of temperature and humidity. Experimental and Applied Acarology, 46, 247–257.

    Article  CAS  Google Scholar 

  • Smith, J. W., & Furr, R. E. (1975). Spider mites and some natural control agents found in cotton in the Delta area of Mississippi. Environmental Entomology, 4, 559–560.

    Google Scholar 

  • Smith, K. M., & Cressman, A. W. (1962). Birefringent crystals in virus-diseased citrus red mites. Journal of Insect Pathology, 4, 229–236.

    Google Scholar 

  • Smith, K. M., Hill, G. J., Munger, F., & Gilmore, J. E. (1959). A suspected virus disease of the citrus red mite Panonychus citri. Nature, 184, 70.

    Google Scholar 

  • Sosa Gomez, D. R., & Moscardi, F. (1991). Microbial control and insect pathology in Argentina. Ciência e Cultura, 43, 375–379.

    Google Scholar 

  • Speare, A. T., & Yothers, W. W. (1924). Is there an entomogenous fungus attacking the citrus rust mite in Florida? Science, 40, 41–42.

    Article  Google Scholar 

  • Sprague, V., Becnel, J. J., & Hazard, E. I. (1992). Taxonomy of phylum Microspora. Critical Reviews in Microbiology, 18, 285–395.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama Kumar, P. L., & Singh S. P. (2008). Enabling mycelial application of Hirsutella thompsonii for managing the coconut mite. Experimental and Applied Acarology, 46, 169–182.

    Article  CAS  Google Scholar 

  • Sreerama Kumar, P. (2006). Hirsutella thompsonii as a mycoacaricide for Aceria guerreronis on coconut in India: Research, development and other aspects. Abstracts 12th International Congress of Acarology, August 2006. Amsterdam, The Netherlands, p. 198.

    Google Scholar 

  • Sreerama Kumar, P., & Singh, S. P. (2001). Coconut mite in India: Biopesticicide breakthrough. Biocontrol News and Information, 22, 76 N–77 N.

    Google Scholar 

  • Steiner, M. (1993). Quality control requirements for pest biological control agents. Alberta Government Publication AECV93-R6. Alberta Environmental Centre, Vegrevile, AB.

    Google Scholar 

  • Steinhaus, E. A. (1949). Principles of insect pathology (757pp). McGraw-Hill: New York.

    Google Scholar 

  • Steinhaus, E. A. (1959). Possible virus disease in European red mite. Journal of Insect Pathology, 1, 435–437.

    Google Scholar 

  • Steinhaus, E. A., & Marsh, G. A. (1962). Reports of diagnosis of diseased insects. 1951–1961. Hilgardia, 33, 349–490.

    Google Scholar 

  • Susilo, F. X., Nordin, G. L., & Brown, G. C. (1994). Age-specific and inter-sexual susceptibility of twospotted spider mite, Tetranychus urticae Koch, to Neozygites floridana Weiser and Muma. Journal of the Kansas Entomological Society, 67, 293–296.

    Google Scholar 

  • Šut’áková, G. (1988). Electron microscopic study of developmental stages of Rickettsiella phytoseiuli in Phytoseiulus persimilis Athias-Henriot (Gamasoidea: Phytoseiidae) mites. Acta Virologica, 32, 50–54.

    Google Scholar 

  • Šut’áková, G. (1994). Phenomenon of Rickettsiella phytoseiuli in Phytoseiulus persimilis mite. Acta microbiol. Acta Microbiologica et Immunologica Hungarica, 41, 411–414.

    Google Scholar 

  • Sztejnberg, A., Doron-Shloush, S., & Gerson, U. (1997). The biology of the acaropathogenic fungus Hirsutella kirchneri. Biocontrol Science and Technology, 7, 577–590.

    Article  Google Scholar 

  • Tamai, M. A., Alves, S. B., Lopes, R. B., & Neves, P. S. (1998). Avaliação de fungos entomopatogênicos para o controle de Tetranychus urticae Koch (p. 1066). Abstracts 17th Congress of Entomology, Rio de Janeiro, Brazil.

    Google Scholar 

  • Tanada, Y., & Kaya, H. K. (1993). Insect pathology (666pp). New York: Academic Press.

    Google Scholar 

  • Tanigoshi, L. K. (1982). Advances in the knowledge of the biology of the Phytoseiidae. In M. Hoy (Ed.), Recent advances in knowledge of phytoseiidae (pp. 1–22). Division of Agricultural Sciences, Special Publication 3284. Berkeley: University of California.

    Google Scholar 

  • Tanigoshi, L. K., Fagerlund, J., & Nishio-Wong, J. Y. (1981). Significance of temperature and food resources to the developmental biology of Amblyseius hibisci (Chant) (Acarina, Phytoseiidae). Zeitschrift fuer Angewandte Entomologie, 92, 409–419.

    Google Scholar 

  • Tanzini, M. R., Alves, S. B., Tamai, M. A., De Moraes, G. J., & Ferla, N. J. (2000). An epizootic of Calacarus heveae (Acari: Eriophyidae) by Hirsutella thompsonii on rubber trees. Experimental and Applied Acarology, 24, 141–144.

    Article  CAS  Google Scholar 

  • Thomas, G. M., & Poinar, G. O. (1973). Report of diagnoses of diseased insects. Hilgardia, 42, 261–360.

    Google Scholar 

  • Tsagkarakou, A., Guillemaud, T., Rousset, F., & Navajas, M. (1996). Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Molecular Biology, 5, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Urueta, E. J. (1980). Control del ácaro Retracus elaeis Keifer mediante el hongo Hirsutella thompsonii Fisher y inhibición de este por dos fungicidas. Revista Colombiana de Entomología, 6, 3–9.

    Google Scholar 

  • Valiente Moro, C., Chauve, C., & Zenner, L. (2005). Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite, 12, 99–109.

    PubMed  CAS  Google Scholar 

  • Van der Geest, L. P. S. (1985). Pathogens of spider mites. In W. Helle & M. W. Sabelis (Eds.), Spider mites. Their biology, natural enemies and control (Vol. 1B, pp. 247–258). Amsterdam: World Crop Pests.

    Google Scholar 

  • Van der Geest, L. P. S. (2004). Schimmels als belagers van schadelijke mijten op planten. Entomologische Berichten (Amsterdam), 64, 146–156.

    Google Scholar 

  • Van der Geest, L. P. S., De Moraes, G. J., Navia, D., & Tanzini, M. R. (2002). New records of pathogenic fungi in mites (Arachnida: Acari) from Brazil. Neotropical Entomology, 31, 493–495.

    Article  Google Scholar 

  • Van der Geest, L. P. S., Elliot, S. L., Breeuwer, J. A. J., & Beerling, E. A. M. (2000). Diseases of mites. Experimental and Applied Acarology, 27, 497–560.

    Article  Google Scholar 

  • Van Dijk, P., & Van der Vlugt, R. A. A. (1994). New mite-borne isolates from rakkyo, shallot and wild leek species. European Journal of Plant Pathology, 100, 269–277.

    Article  Google Scholar 

  • Van Opijnen, T., & Breeuwer, J. A. J. (1999). High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Experimental and Applied Acarology, 23, 871–881.

    Article  Google Scholar 

  • Vey, A., Quiot, J. M., Mazet, I., & McCoy, C. W. (1993). Toxicity and pathology of crude broth filtrate produced by Hirsutella thompsonii var. thompsonii in shake culture. Journal of Invertebrate Pathology, 61, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Walter, D. L. (1999). Cryptic inhabitants of a noxious weed: Mites (Arachnida: Acari) on Lantana camara L. invading forests in Queensland. Australian Journal of Entomology, 38, 197–200.

    Article  Google Scholar 

  • Weeks, A. R., & Breeuwer, J. A. J. (2001). Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 2245–2251.

    Article  CAS  Google Scholar 

  • Weiser, J. (1956). Nosema steinhausi n.sp., nova mikrosporidie z rostoãe Tyrophagus noxius (Acarina, Tyroglyphidae). Ceskoslovenska Parasitologie, 11, 187–192.

    Google Scholar 

  • Weiser, J. (1968). Triplosporium tetranychi sp.n. (Phycomycetes: Entomophthoraceae), a fungus infecting the red spider mite Tetranychus althaeae Hanst. Folia Parasitologica, 15, 115–122.

    Google Scholar 

  • Weiser, J., & Muma, M. H. (1966). Entomophthora floridana n. sp. (Phycomycetes: Entomophthoraceae), a parasite of the Texas citrus mite Tetranychus banksi. The Florida Entomologist, 49, 155–159.

    Article  Google Scholar 

  • Weiss, E., & Moulder, J. W. (1984). Order I. Rickettsiales Gieszczkiewicz. In N. R. Krieg & J. G. Holt (Eds.). Bergey’s Manual of Systematic bacteriology (Vol. 1). Williams and Wilkins: Baltimore.

    Google Scholar 

  • Yaninek, J. S. (1988). Continental dispersal of the cassava green mite, an exotic pest in Africa, and implications for biological control. Experimental and Applied Acarology, 4, 211–224.

    Article  Google Scholar 

  • Yaninek, J. S., Saizonou, S., Onzo, A., Zannou, I., & Gnanvossou, D. (1996). Seasonal and habitat variability in the fungal pathogens, Neozygites cf. floridana and Hirsutella thompsonii, associated with cassava green mites in Benin, West Africa. Biocontrol Science and Technology, 6, 23–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Der Geest, L.P.S. (2010). IPM Potentials of Microbial Pathogens and Diseases of Mites. In: Ciancio, A., Mukerji, K. (eds) Integrated Management of Arthropod Pests and Insect Borne Diseases. Integrated Management of Plant Pests and Diseases, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8606-8_11

Download citation

Publish with us

Policies and ethics