Skip to main content

Intensive Sea Weed Aquaculture: A Potent Solution Against Global Warming

  • Chapter
  • First Online:
Seaweeds and their Role in Globally Changing Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 15))

Abstract

On the basis of current understanding of the relationship between climate change and energy policy, development of an effective and multistructured renewable energy sector is crucial, as acknowledged in the United Nations Framework Convention on Climate Change (UNFCCC) and the fourteenth Conference of the Parties (COP-14), held in December 2008 in Ponzan, Poland. The worldwide energy demand is increasing rapidly as many industries and populations are rapidly expanding. Since fossil fuels are finite resources and their combustion leads to a further increase of greenhouse gases, such as CO2, SO2, and NO x , their continued use is not sustainable. Today, renewable energy sources supply 14% of the total global energy demand. Some expect that in 2040, 50% of the world energy supply will come from renewable sources (Demirbas, 2008). Additional efforts and further research and development on biofuels, toward environmentally and economically sustainable processes, are essential for the full exploitation of this given market opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beardall, J., Beer, S. and Raven, J.A. (1998) Biodiversity of marine plants in an era of climate change: some predictions on the basis of physiological performance. Bot. Mar. 41: 113–123.

    Article  CAS  Google Scholar 

  • Bird, K.T. and Benson, P.H. (eds.) (1987) Seaweed Cultivation for Renewable Resources. Elsevier Press, New York, 381 pp.

    Google Scholar 

  • Breeman, A.M. (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species, In: J.J. Beukema, W.J. Wolff and J.J.W.M. Brouns (eds.) Expected Effects of Climate Change on Marine Coastal Ecosystems. Kluwer, The Netherlands, pp. 69–76.

    Chapter  Google Scholar 

  • Buschmann, A.H., Mora, O.A., Gomez, P., Botttger, M., Buitano, S., Retamales, C., Vergara, P.A. and Gutierrez, A. (1994) Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283–300.

    Article  Google Scholar 

  • Buschmann, A.H., Troell, M. and Kautsky, N. (2001) Integrated algal farming: a review. Can. Biol. Mar. 42: 83–90.

    Google Scholar 

  • Buschmann, A.H., Hernandez-Gonzales, M.C., Aranda, C., Chopin, T., Neori, A., Halling, C. and Troell, M. (2008) Mariculture waste management, In: S.E. Jorgensen and B.D. Fath (Editor-in-chief) Ecological Engineering, Vol. 3 of Encyclopedia of Ecology, 5 vols. Elsevier, Oxford, pp. 2211–2217.

    Google Scholar 

  • Chopin, T. (2006) Integrated multi-trophic aquaculture. Northern Aquacult. July/August 2006: 4, available at http://www.northernaquaculture.com

  • Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S. and Mathieson, A. (1999) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11: 463–472.

    Article  Google Scholar 

  • Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-Gonzalez, J.A., Yarish, C. and Neefus, C. (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37: 975–986.

    Article  Google Scholar 

  • Chopin, T., Robinson, S.M.N., Troell, M., Neori, A., Bushmann, A.H. and Fang, J. (2008) ­Multitrophic integration for sustainable marine aquaculture, In: S.E. Jorgensen and B.D. Fath (Editor-in-Chief) Ecological Engineering. Vol. 3 of Encyclopedia of Ecology, 5 vols. Elsevier, Oxford, pp. 2463–2475.

    Google Scholar 

  • Chung, I.K. (2008) Seaweed coastal CO2 removal belt in Korea. The United Nations Framework Convention on Climate Change, UNFCCC, and the Thirteenth Conference of the Parties, COP-13, Side event of seaweed coastal CO2 removal belt in Korea & algal paper and biofuel, 6–10 December 2007, Bali, Indonesia.

    Google Scholar 

  • Chung, I.K., Beardalla, J., Mehta, S., Sahoo, D. and Stojkovica, S. (2007) Using marine algae for carbon sequestration: a critical appraisal. The United Nations Framework Convention on Climate Change, UNFCCC, and the Fourteenth Conference of the Parties, COP-14, Side event of seaweed coastal CO2 removal belt in Korea & algal paper and biofuel, 1–12 December 2008, Ponzan, Poland.

    Google Scholar 

  • Cirik, S. and Cirik, S. (1999) Aquatic plants: biology, ecology and culture techniques of marine plants. Ege University, Fisheries Faculty Publications, No: 28, Bornova, Izmir, 188 p., ISBN 975-483-46-4 (In Turkish).

    Google Scholar 

  • Cirik, S., Turan, G., Ak, I. and Koru, E. (2006) Gracilaria verrucosa (Rhodophyta) culture in Turkey. International Conference on Coastal oceanography and Sustainable Marine Aquaculture: Confluence and Synergy, 2–4 May 2006, Sabah, Malaysia.

    Google Scholar 

  • Cohen, I. and Neori, A. (1991). Ulva lactuca biofilters for marine fishpond effluent. I. Ammonia uptake kinetics and nitrogen content. Bot. Mar. 34: 475–482.

    Article  Google Scholar 

  • Critchley, A.T. and Ohno, M. (eds.) (1997) Cultivation and farming of marine plants, In: CD-ROM, Expert Centre for Taxonomic Identification (ETI), University of Amsterdam, Amsterdam, ISBN 3-540-14549-4. Springer, New York.

    Google Scholar 

  • Critchley, A.T. and Ohno, M. (eds.) (1998) Seaweed Resources of the World. Japan International Cooperation Agency, Yokosuka, Japan, 429 pp.

    Google Scholar 

  • Critchley, A.T. and Ohno, M. (eds.) (2001) Cultivation and Farming of Marine Plants. ETI World Biodiversity Database, CD-ROM Series. http://www.eti.uva.nl/products/catalogue/cd_detail.php?id=177&referrer=search(accessed December 2007).

  • Critchley, A.T., Ohno, M. and Largo, D.B. (eds.) (2006) World seaweed resources, In: DVD-ROM, Expert Centre for Taxonomic Identification (ETI), University of Amsterdam, Amsterdam, ISBN: 90 75000 80 4. Springer, New York.

    Google Scholar 

  • Dayton, P.K. and Tegner, M.J. (1984) Catastrophic storms, El Niño, and patch stability in a Southern California Kelp Community. Science 224: 283–285.

    Article  PubMed  CAS  Google Scholar 

  • De Poli, F., Nicolucci, C. and Monegato, A. (1994) Industrial production of paper obtained from prolific seaweeds in Venice Lagoon. Cellulosa e Carta (Italy) 45(5–6): 41–47 (in Italian).

    Google Scholar 

  • De Roeck-Holtzhauer, Y. (1991) Uses of seaweeds in cosmetics, In: M.D. Guiry and G. Blunden (eds.) Seaweed Resources in Europe: Uses and Potential. Wiley, Chichester, pp. 83–94.

    Google Scholar 

  • Demirbas, A. (2008) Global renewable energy and biofuel scenarios, In: A. Demirbas (ed.) Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer, London, ISBN: 978-1-84628-994-1 (print) 978-1-84628-995-8 (online), pp. 185–194.

    Google Scholar 

  • Edwards, P. (2004) Traditional Chinese aquaculture and its impact outside China. World Aquacult. 35:24–27.

    Google Scholar 

  • FAO (2003) Guide to the seaweed industry (A). FAO Fisheries Technical Paper No. 441 Rome, 116 pp.

    Google Scholar 

  • FAO (2006a) Aquaculture production 2004, FAO Yearbook, Fishery Statistics, Vol: 98/2. Rome.

    Google Scholar 

  • FAO (2006b) The State of World Fisheries and Aquaculture 2006. Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • FAO (2009) The State of World Fisheries and Aquaculture 2008. Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Fei, X. (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145–51.

    Article  Google Scholar 

  • Flowers, A.B. and Bird, K.T. (1987) Methane production from seaweeds, In: I. Akatsuka (ed.) Introduction to Applied Phycology. SPB Academic Publishing, The Hague, pp. 575–587.

    Google Scholar 

  • Gao, K. and McKinley, K.R. (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6: 45–60.

    Article  Google Scholar 

  • Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T. and Kiyohara, M. (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. Appl. Phycol. 3: 355–362.

    CAS  Google Scholar 

  • Gao, K., Aruga, Y., Asada, K. and Kiyohara, M. (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 5: 563–571.

    Article  CAS  Google Scholar 

  • Hanisak, M.D. and Ryther, J.H. (1986) The experimental cultivation of the red seaweed Gracilaria tikvahie as an ‘energy crop’: an overview, In: W.R. Barclay and R.P. McIntosh (eds.) Algal Biomass Technologies, An Interdisciplinary Perspective, Vol. 83. Nova Hedwigia, Berlin, pp. 212–217.

    Google Scholar 

  • Issar, A.S. and Neori, A. (2010, this volume) Progressive development of new marine environments—IMTA (integrated multi-trophic aquaculture) production: a new policy proposed for the mitigation of impacts of climate change on coastal regions, particularly in arid and semi-arid climates.

    Google Scholar 

  • Kain-Jones, J.M. (1991) Cultivation of attached seaweeds, In: M.D. Guiry and G. Blunden (eds.) Seaweed Resources in Europe: Uses and Potential. Wiley, Chichester, pp. 309–377.

    Google Scholar 

  • Kang, Y.H., Shin, J.A., Kim, M.S. and Chung, I.K. (2008) A preliminary study of the bioremediation potential of Codium fragile applied to seaweed integrated multi-trophic aquaculture (IMTA) during the summer. J. Appl. Phycol. 20(2): 183–190.

    Article  CAS  Google Scholar 

  • Kelly, M.S. and Dworjanyn, S. (2008) The Potential of Marine Biomass for Anaerobic Biogas Production. The Crown Estate, 103 pp., ISBN: 978-1-906410-05-6.

    Google Scholar 

  • Krom, M.D. and Neori, A. (1989) A total nutrient budget for an experimental intensive fishpond with circularly moving seawater. Aquaculture 83: 345–358.

    Article  Google Scholar 

  • Kubler, J.E., Johnston, A.M. and Raven, J.A. (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22: 1303–1310.

    Article  Google Scholar 

  • Levavasseur, G., Edwards, G.E., Osmond, C.B. and Ramus, J. (1991) Inorganic carbon limitation of photosynthesis in Ulva rotundata (Chlorophyta). J. Phycol. 27: 667–672.

    Article  Google Scholar 

  • Maberly, S.C. (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26: 439–449.

    Article  CAS  Google Scholar 

  • McHugh, D.J. (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441, 107 pp. Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Morand, P., Carpentier, B., Charlier, R.H., Maze, J., Orlandini, M., Plunkett, B.A. and de Waart, J. (1991) Bioconversion of seaweeds, In: M. Guiry and G. Blunden (eds.) Seaweed Resources in Europe: Uses and Potential. Wiley, Chichester, pp. 95–148.

    Google Scholar 

  • Muraoka, D. (2004) Seaweed resources as a source of carbon fixation. Bull. Fish. Res. Agen. Suppl. 1: 59–63.

    Google Scholar 

  • Neori, A. (2007) Essential role of seaweed cultivation in integreted multi-trophic aquaculture farms for global expansion of mariculture: an analysis. J. Appl. Phycol. Online Publication.

    Google Scholar 

  • Neori, A. (2008) Macro-algal (seaweed) biomass converts economically CO2 into food, chemicals, and biofuel. The United Nations Framework Convention on Climate Change, UNFCCC, and the Fourteenth Conference of the Parties, COP-14, Side event of seaweed coastal CO2 removal belt in Korea & algal paper and biofuel, 1–12 December 2008, Ponzan, Poland.

    Google Scholar 

  • Neori, A. and Shpigel, M. (1999) Using algae to treat effluents and feed invertebrates in sustainable integrated mariculture. World Aquacult. 30(2): 46–51.

    Google Scholar 

  • Neori, A., Krom, M.D., Cohen, I. and Gordin, H. (1989) Water quality conditions and particulate chlorophyll a of new intensive seawater fishponds in Eilat, Israel: daily and diel variations. Aquaculture 80: 63–78.

    Article  CAS  Google Scholar 

  • Neori, A., Krom, M.D., Ellner, S.P., Boyd, C.E., Popper, D., Rabinovitch, R., Davison, P.J., Dvir, O., Zuber, D., Ucko, M., Angel, D. and Gordin, H. (1996) Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141: 183–199.

    Article  Google Scholar 

  • Neori, A., Shpigel, M. and Ben-Ezra, D. (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186: 279–291.

    Article  Google Scholar 

  • Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M. and Yarish, C. (2004) Integrated aquaculture: rationale, evolution and state of the art, emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231: 361–391.

    Article  Google Scholar 

  • Nielsen, K.J. (2003) Nutrient loading and consumers: agents of change in opencoast macrophyte assemblages. Proc. Natl. Acad. Sci. 13: 7660–7665.

    Article  Google Scholar 

  • Notoya, M. (2010, this volume). Production of biofuel by macro-alga with preservation of marine resources and environment.

    Google Scholar 

  • Nunes, J.P., Ferreira, J.G., Gazeau, F., Lencart-Silva, J., Zhang, X.L., Zhu, M.Y. and Fang, J.G. (2003) A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture 219: 257–277.

    Article  Google Scholar 

  • Petrus, L. and Noordermeer, M. (2006) Biomass to biofuels, a chemical perspective. Green Chem. 8: 861–867.

    Article  CAS  Google Scholar 

  • Renaud, S.M. and Luong-Van, J.T. (2006) Seasonal variation in the chemical composition of tropical Australia marine macroalgae. J. Appl. Phycol. 18: 381–387.

    Article  CAS  Google Scholar 

  • Ritschard, R.L. (1992) Marine algae as a CO2 sink. Water Air Soil Pollut. 64: 289–303.

    Article  CAS  Google Scholar 

  • Ryther, J.H., Goldman, J.C., Gifford, J.E., Huguenin, J.E., Wing, A.S., Clarner, J.P., Williams, L.D. and Lapointe, B.E. (1975) Physical models of integrated waste recycling—marine polyculture systems. Aquaculture 5: 63–177.

    Article  Google Scholar 

  • Sahoo, D. and Yarish, C. (2005) Mariculture of seaweeds, In: R.A. Anderson (ed.) Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA, pp. 219–237.

    Google Scholar 

  • Schramm, W. (1991a) Seaweeds for waste water treatment and recycling of nutrients, In: M.D. Guiry and G. Blunden (eds.) Seaweed Resources in Europe: Uses and Potential. Wiley, Chichester, pp. 149–168.

    Google Scholar 

  • Schramm, W. (1991b) Cultivation of unattached seaweeds, In: M.D. Guiry and G. Blunden (eds.) Seaweed Resources in Europe: Uses and Potential. Wiley, Chichester, pp. 379–408.

    Google Scholar 

  • Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F.E. and Neori, A. (2003) A semirecirculating, integrated system for the culture of fish and seaweed. Aquaculture 221: 167–181.

    Article  Google Scholar 

  • Schuenhoff, A., Mata, L. and Santos, R. (2006) The tetrasporophyte of Asparagopsis armata as a novel seaweed biofilter. Aquaculture 252: 3–11.

    Article  Google Scholar 

  • Shpigel, M. and Neori, A. (1996) The integrated culture of seaweed, abalone, fish, and clams in modular intensive land-based system. I. Proportion of size and projected revenue. Aquacult. Eng. 15(5): 313–326.

    Article  Google Scholar 

  • Shpigel, M., Neori, A., Popper, D.M. and Gordin, H. (1993a) A proposed model for ‘‘clean’’ land based polyculture of fish, bivalves and seaweeds. Aquaculture 117: 115–128.

    Article  Google Scholar 

  • Sinha, V.R.P., Fraley, L. and Chowdhy, B.S. (2001) Carbon dioxide utilization and seaweed production. Proceedings of NETL: First National Conference on Carbon Sequestration (http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p14.pdf).

  • Surif, M.B. and Raven, J.A. (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–103.

    Article  Google Scholar 

  • Troell, M., Halling, C., Nilsson, A., Buschmann, A.H., Kautsky, N. and Kautsky, L. (1997) Integrated marine culture of Gracilaria chilensis (Graciales, Rhodophyta). And salmon cages for reduced environmental impact and increased economic output. Aquaculture 156: 45–61.

    Article  Google Scholar 

  • Troell, M., Rönnbäck, P., Halling, C., Kautsky, N. and Buschmann, A.H. (1999) Ecological engineering in aquaculture: use of seaweed for removing nutrients from intensive mariculture. J. Appl. Phycol. 11: 89–97.

    Article  CAS  Google Scholar 

  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A.H., Kautsky, N. and Yarish, C. (2003) Integrated mariculture: asking the right questions. Aquaculture 226: 69–90.

    Article  Google Scholar 

  • Troell, M., Robertson-Andersson, D., Anderson, R.J., Bolton, J.J., Maneveldt, G., Halling, C. and ­Probyn, T. (2006) Abalone farming in South Africa: an overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. Aquaculture 257: 266–281.

    Article  Google Scholar 

  • Turan, G. and Cirik, S. (2008) Culture, mineral-vitamin composition, and thalassotherapy application studies on seaweeds. The 11th International Conference on Applied Phycology, 22–27 June 2008, The National University of Ireland, Galway, Ireland.

    Google Scholar 

  • Turan, G., Ak, I., Cirik, S., Koru, E. and Kaymakci-Basaran, A. (2006) Gracilaria verrucosa ­(Hudson) Papenfuss culture in intensive fish farm. Ege Univ. J. Fish. Faculty 23(1/2): 305–309 (in ­Turkish).

    Google Scholar 

  • Turan, G., Cirik, S., Tekogul, H., Koru, E., Seyhaneyildiz, S., Peker, O. and Can, E. (2007a) Seaweed Cultivation in Integrated Aquaculture Systems. XIV. National Fisheries Symposium, Mugla University, Fisheries Faculty, 4–7 September 2007, Mugla, Turkey (in Turkish).

    Google Scholar 

  • Turan, G., Koru, E., Tekogul, H., Seyhaneyildiz, S., Can, E., Peker, O. and Cirik, S. (2007b) Seaweed Aquaculture in Turkey: Pilot Projects with Potential for Integrated Aquaculture Systems, Aquaculture Europe 07, October 24–27, 2007, Ä°stanbul, Turkey.

    Google Scholar 

  • Turan, G., Koru, E., Tekogul, H., Seyhaneyildiz, S., Peker, O. and Cirik, S. (2007c) Seaweed Resources of Turkey, Aquaculture Europe 07, October 24–27, 2007, Ä°stanbul, Turkey.

    Google Scholar 

  • Whitmarsh, D.J., Cook, E.J. and Black, K.D. (2006) Searching for sustainability in aquaculture: an investigation into the economic prospects for an integrated salmon-mussel production system. Mar. Policy 30(3): 293–298.

    Article  Google Scholar 

  • Xu, Y., Fang, J., Tang, Q., Lin, J., Le, G. and Liao, L. (2008) Improvement of water quality by the macroalgae, Gracilaria lemaneiformis (Rhodophyta), near Aquaculture effluent outlets. J. World Aquacult. Soc. 39(4): 549–556.

    Article  Google Scholar 

  • Yang, Y.F., Li, C.H., Nie, X.P., Tang, D.L. and Chung, I.K. (2004) Development of mariculture and its impacts in Chinese coastal waters. Rev. Fish. Biol. Fish. 14: 1–10.

    Article  Google Scholar 

  • Yang, Y.F., Fei, X., Song, J., Hu, H., Wang, G. and Chung, I.K. (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254: 554–562.

    Article  Google Scholar 

  • Yarish, C. and Pereira, R. (2008) Mass production of marine macroalgae, In: S.E. Jørgensen and B.D. Fath (Editor-in-Chief) Ecological Engineering, Vol. 3 of Encyclopedia of Ecology, 5 vols. Elsevier, Oxford, pp. 2236–2247.

    Google Scholar 

  • You, H.C. (2008) Innovative seaweed pulp, paper and biofuel. The United Nations Framework Convention on Climate Change, UNFCCC, and the Fourteenth Conference of the Parties, COP-14, Side event of seaweed coastal CO2 removal belt in Korea & algal paper and biofuel, 1–12 December 2008, Ponzan, Poland.

    Google Scholar 

  • Zou, D. (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250: 726–735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Turan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Turan, G., Neori, A. (2010). Intensive Sea Weed Aquaculture: A Potent Solution Against Global Warming. In: Seckbach, J., Einav, R., Israel, A. (eds) Seaweeds and their Role in Globally Changing Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8569-6_20

Download citation

Publish with us

Policies and ethics