Skip to main content

Oxidative Stress, Dietary Restriction and Aging

  • Chapter
  • First Online:
  • 1874 Accesses

Abstract

It is accepted that dietary restriction (DR) feeding regimes will extend life span and even slow the rate of aging in a wide range of invertebrate and vertebrate species. In spite of significant research effort however, the biochemical mechanism underlying this effect still remains to be resolved. Although a body of data supports the interpretation that DR feeding regimes reduce the intensity of oxidative stress and damage in tissues of older animals, direct experimental confirmation is lacking that manipulating oxidative stress will modify the rate of aging. In tissues from rodent species the major cause of reduced exposure to reactive oxygen species (ROS) under DR feeding conditions results from a lower rate of ROS generation at the mitochondria. Recent work has suggested a plausible explanation of how DR feeding induces this adaptive response. What remains unclear is the cellular target in both fully fed and DR fed animals that is sensitive to ROS and thereby determines the rate of aging. Switching rodents between feeding regimes in mid-life or later provides little evidence of a memory effect of the initial feeding regime on ultimate life-time survival. This observation does not therefore support the interpretation that the extended survival induced by DR feeding results from a slower life time rate of accrual of oxidative damage. The use of a small molecular mimetic of the DR effect may provide an alternative experimental approach to identify the mechanism underlying the extended survival observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andziak, B., O’Connor, T. P., Qi, W. B., Dewaal, E. M., Pierce, A., Chaudhuri, A. R., Van Remmen, H. and Buffenstein, R., 2006. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Ash, C. E., 2008. Functional and Molecular Mechanisms Underlying Reduced Mitochondrial Reactive Oxygen Species Generation Under Dietary Restricted Feeding Conditions. Thesis, University of Liverpool, UK.

    Google Scholar 

  • Aspnes, L. E., Lee, C. M., Weindruch, R., Chung, S. S., Roecker, E. B. and Aiken, J. M., 1997. Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11, 573–581.

    PubMed  CAS  Google Scholar 

  • Barja, G., 2004. Free radicals and aging. Trends Neurosci 27, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, K. B. and Ames, B. N., 1998. The free radical theory of aging matures. Physiol Rev 78, 547–581.

    PubMed  CAS  Google Scholar 

  • Bevilacqua, L., Ramsey, J. J., Hagopian, K., Weindruch, R. and Harper, M. E., 2004. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endoc M 286, E852–861.

    Google Scholar 

  • Bevilacqua, L., Ramsey, J. J., Hagopian, K., Weindruch, R. and Harper, M. E., 2005. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endoc M 289, E429–E438.

    CAS  Google Scholar 

  • Brand, M. D., 1996. Top down metabolic control analysis. J Theor Biol 182, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, K. E., Liu, R. K., Smith, G. S., Meredith, P. J., Mickey, M. R. and Walford, R. L., 1983. The effect of dietary restriction of varying duration on survival, tumor patterns, immune function, and body temperature in B10C3F1 mice. J Gerontol 38, 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, A., Forster, M. J., Lal, H. and Sohal, R. S., 1996. Effect of age and caloric-intake on protein oxidation in different brain-regions and on behavioral functions of the mouse. Arch Biochem Biophys 333, 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Forster, M. J., Sohal, B. H. and Sohal, R. S., 2000. Reversible effects of long-term caloric restriction on protein oxidative damage. J Gerontol Series A Biol Sci Med Sci 55, B522–529.

    Article  Google Scholar 

  • Goto, S., Takahashi, R., Radak, Z. and Sharma, R., 2007. Beneficial biochemical outcomes of late-onset dietary restriction in rodents. Ann N Y Acad Sci 1100, 431–441.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, M. L., Van Remmen, H., Drake, J. A., Yang, H., Guo, Z. M., Kewitt, K., Walter, C. A. and Richardson, A., 2001. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci 98, 10469–10474.

    Article  PubMed  CAS  Google Scholar 

  • Hansford, R. G., Hogue, B. A. and Mildaziene, V., 1997. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Holehan, A. M. and Merry, B. J., 1986. The experimental manipulation of ageing by diet. Biol Rev 61, 329–368.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T. T., Carlson, E. J., Gillespie A. M., Shi Y. and Epstein, C. J., 2000. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol Series A Biol Sci Med Sci 55A, B5–9.

    Google Scholar 

  • Korshunov, S. S., Skulachev, V. P. and Starkov, A. A., 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416, 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, A. J. and Merry, B. J., 2004. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol-Reg I 286, R71–79.

    Google Scholar 

  • Lambert, A. J., Wang, B. and Merry, B. J., 2004. Exogenous insulin can reverse the effects of short-term caloric restriction on mitochondria. Biochem Biophys Res Comm 316, 1196–1201.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. K., Pugh, T. D., Klopp, R. G., Edwards, J., Allison, D. B., Weindruch, R. and Prolla, T. A., 2004. The impact of α-lipoic acid, coenzyme Q10, and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med 36, 1043–1057.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.-S., 1997. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Bioscience Rep 17, 259–272.

    Article  CAS  Google Scholar 

  • Mair, W., Goymer, P., Pletcher, S. D. and Partridge, L., 2003. Demography of dietary restriction and death in Drosophila. Science 301, 1731–1733.

    Article  PubMed  CAS  Google Scholar 

  • Masoro, E. J., 2005. Overview of caloric restriction and ageing. Mech Ageing Dev 126, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • McCarter, R., Masoro, E. J. and Yu, B. P., 1985. Does food restriction retard aging by reducing the metabolic rate? Am J Physiol 248, E488–E490.

    PubMed  CAS  Google Scholar 

  • McCarter, R. and McGee, J., 1988. Food restriction and metabolic rate: different adaptive time courses of BMR and 24 hour metabolic rate. FASEB J 2, A1208.

    Google Scholar 

  • McCarter, R. J. and Palmer, J., 1992. Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am J Physiol 263, E448–452.

    Google Scholar 

  • Merry, B. J., 1987. Food restriction and the aging process. In Ruiz-Torres, A. (ed), Biological Age and Aging Risk Factors. Tecnipublicaciones, Madrid, 259–272.

    Google Scholar 

  • Merry, B. J., 2000. Calorie restriction and age-related oxidative stress. In Toussaint, O., Osiewacz, H. D., Lithgow, G. J. and Brack, C. (eds), Molecular and Cellular Gerontology Vol. 908. New York Academy of Sciences, New York, pp. 180–198.

    Google Scholar 

  • Merry, B. J., 2002. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell B 34, 1340–1354.

    Article  CAS  Google Scholar 

  • Merry, B. J., 2004. Oxidative stress and mitochondrial function with ageing – the effects of calorie restriction. Aging Cell 3, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Merry, B. J., Kirk, A. J. and Goyns, M. H., 2008. Dietary lipoic acid supplementation can mimic or block the effect of dietary restriction on life span. Mech Ageing Dev 129, 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, A., Gredilla, R., Pamplona, R., Portero-Otãn, M., Vara, E., Tresguerres, J. A. F. and Barja, G., 2005. Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogeront 6, 15–26.

    Article  CAS  Google Scholar 

  • Sanz, A., Pamplona, R. and Barja, G., 2006. Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8, 582–599.

    Article  PubMed  CAS  Google Scholar 

  • Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C. and Rabinovitch, P. S., 2005. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911.

    Article  PubMed  CAS  Google Scholar 

  • Selman, C., Phillips, T., Staib, J. L., Duncan, J. S., Leeuwenburgh, C. and Speakman, J. R., 2005. Energy expenditure of calorically restricted rats is higher than predicted from their altered body composition. Mech Ageing Dev 126, 783–793.

    Article  PubMed  Google Scholar 

  • Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J. and Lal, H., 1994. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74, 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Speakman, J. R., Talbot, D. A., Selman, C., Snart, S., Mclaren, J. S., Redman, P., Krol, E., Jackson, D. M., Johnson, M. S. and Brand, M. D., 2004. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Ageing Cell 3, 87–95.

    Article  CAS  Google Scholar 

  • Spindler, S. R., 2005. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech Ageing Dev 126, 960–966.

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., Thorpe, S. R., Alderson, N. L., Baynes, J. W., Epstein, C. J., Huang, T.-T., Nelson, J., Strong, R. and Richardson, A., 2003. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16, 29–37.

    Article  PubMed  Google Scholar 

  • Votyakova, T. V. and Reynolds, I. J., 2001. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. Neurochem 79, 266–277.

    Article  CAS  Google Scholar 

  • Weindruch, R. L., Cheung, M. K., Verity, M. A. and Walford, R. L., 1980. Modification of mitochondrial respiration by aging and dietary restriction. Mech Ageing Dev 12, 372–392.

    Article  Google Scholar 

  • Yu, B. P., 1996. Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med 21, 651–668.

    Article  PubMed  CAS  Google Scholar 

  • Yu, B. P., Masoro, E. J. and McMahan, C. A., 1985. Nutritional influences on aging of Fischer 344 rats: I. physical, metabolic and longevity characteristics. J Gerontol 40, 657–670.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Merry, B.J., Ash, C.E. (2010). Oxidative Stress, Dietary Restriction and Aging. In: Everitt, A., Rattan, S., le Couteur, D., de Cabo, R. (eds) Calorie Restriction, Aging and Longevity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8556-6_8

Download citation

Publish with us

Policies and ethics