Skip to main content

Caloric Restriction and Cardiovascular Disease

  • Chapter
  • First Online:

Abstract

Cardiovascular disease is a main cause of morbidity and a leading cause of death of the elderly in Western societies. It is widely accepted that the dietary regimen known as caloric restriction, undernutrition without malnutrition, delays the onset of aging and extends lifespan in laboratory animal models. Evidence supporting the role of caloric restriction intervening in the cardiovascular aging process by preventing the development of cardiovascular disease is presented in detail in this review. The theme that emerges from this overview is that neuroendocrine factors induced by caloric restriction attenuate age-related reactive oxygen species (ROS) overproduction and prevent inflammatory phenotypic alterations in the cardiovascular system. Also discussed are some of the possible caloric restriction-induced cellular mechanisms by which age-related vascular oxidative stress and inflammation can be delayed or reversed thereby improving cardiovascular health in the elderly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addabbo, F., Ratliffe, B., Park, H. C., Kuo, M. C., Ungvari, Z., Csiszar, A., Krasnikov, B., Sodhi, K., Zhang, F., Nasjletti, A. and Goligorski, M. S., 2009. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 174, 34–43.

    Article  PubMed  CAS  Google Scholar 

  • Adler, A., Messina, E., Sherman, B., Wang, Z., Huang, H., Linke, A. and Hintze, T. H., 2003. NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption of NO in old Fisher 344 rats. Am J Physiol Heart Circ Physiol 285, H1015–H1022.

    PubMed  CAS  Google Scholar 

  • Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G. and Talan, M., 2005. Cardioprotection by intermittent fasting in rats. Circulation 112, 3115–3121.

    Article  PubMed  Google Scholar 

  • Allard, J. S., Heilbronn, L. K., Smith, C., Hunt, N. D., Ingram, D. K. and Rasmussin, E., Pennington CALERIE Team and de Cabo, R., 2008. In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets. PLoS ONE 3, e3211.

    Article  PubMed  CAS  Google Scholar 

  • Austad, S. N., 1989. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 24, 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, R. S., Nemoto, S. and Finkel, T., 2005. Mitochondria, oxidants, and aging. Cell 120, 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua, L., Ramsey, J. J., Hagopian, K., Weindruch, R. and Harper, M. E., 2005. Long-term caloric restriction increases UCP3 content but decreases protein leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 289, E429–E438.

    Article  PubMed  CAS  Google Scholar 

  • Brand, M. D., Affoutit, C., Esteves., T. C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L. and Parker, N., 2004. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37, 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg, H. M., Borg, K. E., Meliska, C. J. and Bartke, A., 1996. Dwarf mice and the ageing process. Nature 384, 33.

    Article  PubMed  CAS  Google Scholar 

  • Castello, L., Froio, T., Cavallini, G., Biasi, F., Sapino, A., Leonarduzzi, G., Bergamini, E., Poli, G. and Chiarpotto, E., 2005. Calorie restriction protects against age-related rat aorta sclerosis. FASEB J 19, 1863–1865.

    PubMed  CAS  Google Scholar 

  • Cefalu, W. T., Wang, Z. Q., Bell-Farrow, A. D., Collins, J., Morgan, T. and Wagner, J. D., 2004. Calorie restriction and cardiovascular aging in cynomolgus monkeys (Macaca fasci cularis): metabolic, physiologic and atherosclerotic measures from a 4-year intervention trial. J Gerontol A Biol Sci Med Sci 59, 1007–1014.

    Article  PubMed  Google Scholar 

  • Chang, J., Cornell, J. E., Van Remmen, H., Hakala, K., Ward, W. F. and Richardson, A., 2007. Effect of aging and caloric restriction on the mitochondrial proteome. J Gerontol A Biol Sci Med Sci 62, 223–234.

    Article  PubMed  Google Scholar 

  • Chen, X. L., Varner, S. E., Rao, A. S., Grey, J. Y., Thomas, S., Cook, C. K., Wasserman, M. A., Medford, R. M., Jaiswal, A. K. and Kunsch, C., 2003. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278, 703–711.

    Article  PubMed  CAS  Google Scholar 

  • Civitarese, A. E., Carling, S., Heilbronn, L. K., Hulver, M. H., Ukropcova, B., Deutch, W. A., Smith, S. R. and Ravussin, E. and CALERIE Pennington Team, 2007. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4, e76.

    Article  PubMed  CAS  Google Scholar 

  • Civitarese, A. E., Ukropcova, B., Carling, S., Hulver, M., De Fronzo, R. A., Mandarino, L., Ravussin, E. and Smith, R., 2006. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab 4, 75–87.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R. and Sinclair, D. A., 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Colom, B., Oliver, J., Roca, P. and Garcia-Palmer, F. J., 2007. Calorie restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74, 456–465.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Labinskyy, N., Jimenez, R., Pinto, J. T., Ballabh, P., Losonczy, G., Pearson, K. J., de Cabo, R., Ungvari, Z. 2009 Aug. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRTI. Mech Ageing Dev. 130(8):518–527.

    Google Scholar 

  • Csiszar, A., Labinsky, N., Orosz, Z. and Ungvari, Z., 2006. Altered mitochondrial energy metabolism may play a role in vascular aging. Med Hypotheses 67, 904–908.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Labinsky, N., Perez, V., Recchia, F. A., Podlutsky, A., Mukhopodhyay, P., Lesonczy, G., Packer, P., Austad, S. N., Bartke, A. and Ungvari, Z., 2008a. Endothelial function and vascular oxidative stress in long-lived GH/IGF – deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295, H1882–H1894.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Labinsky, N., Podlutsky, A., Kaminski, P. M., Wolin, M. S., Zhand, C., Mukhopadhyay, P., Pacher, P., Hu, F., de Cabo, R., Ballabh, P. and Ungvari, Z., 2008b. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol 294, H2721–H2735.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Labinskyy, N., Smith, K., Rivera, A., Orosz, Z. and Ungvari, Z., 2007. Vasculoprotective effects of anti-tumor necrosis-factor-{alpha} treatment in aging. Am J Pathol 170, 388–398.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Pacher, P., Kaley, G. and Ungvari, Z., 2005. Role of oxidative and nitrosative stress,longevity genes and poly(ADP-ribose)polymerase in cardiovascular dysfunction associated with aging. Curr Vasc Pharmacol 3, 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Ungvari., Z., Edwards, J. G., Kaminski, P., Wolin, M. S., Koller, A. and Kaley, G., 2002. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90, 1159–1160.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G. and Kaley, G., 2003. Aging-induced pro-inflammatory shift in cytokine expression profile in rat coronary arteries. FASEB J 17, 1183–1185.

    PubMed  CAS  Google Scholar 

  • Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G. and Kaley, G., 2004. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 17, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Dai, G., Vaughn, S., Zhang, Y., Wang, E. T., Garcia-Cardena, G. and Gimbrone, M. A., 2007. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res 101, 723–733.

    Article  PubMed  CAS  Google Scholar 

  • de Cabo, R., Furer-Galban, S., Anson, R. M., Gilman, C., Gorospe, M. and Lane, M. A., 2003. An in vitro model of caloric restriction. Exp Gerontol 38, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Dhahbi, J. M., Tsuchiya, T., Kim, H. J., Motr, P. L. and Spindler, S. R., 2006. Gene expression and physiologic responses of the heart to the initiation and with drawal of calorie restriction. J Geront A Biol Sci Med Sci 61, 218–231.

    Article  Google Scholar 

  • Edwards, M. G., Anderson, R. M., Yuan, M., Kendziorski, C. M., Weindruch, R. and Prolla, T. A., 2007. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8, 80.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, I. J., Rudel, L. L., Terry, J. G., Kemnitz, J. W., Weindruch, R., Zaccaro, I. J. and Cefalia, W. T., 2001. Calorie restriction lowers plasma lipoprotein (a) in male but not female rhesus monkeys. Exp Gerontol 36, 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  • Elhadd, T. A., Abdu, T. A., Oxtoby, J., Kennedy, G., McLaren, M., Neary, R., Beich, J. J. and Clayton, R. N., 2001. Biochemical and biophysical markers of endothelial dysfunction in adults with hypopituitarism and severe GH deficiency. J Clin Endocrinol Metab 86, 4223–4232.

    Article  PubMed  CAS  Google Scholar 

  • Ershler, W. B., Sun, W. H., Binkley, N., Gravenstein, S., Volk, M. J., Kamoske, G., Klopp, R. G., Kamoske, G., Klopp, R. G., Roecker, E. B., Daynes, R. A. and Weindruch, R., 1993. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res 12, 225–230.

    PubMed  CAS  Google Scholar 

  • Fontana, L., Meyer, T. E., Klein, S. and Holloszy, J. O., 2004. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 101, 6659–6663.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, L., Villareal, D. T., Weiss, E. P., Racette, S. B., Steger-May, K., Klein, S. and Holloszy, J. O. and the Washington University School of Medicine CALERIE Group, 2007. Calorie restriction or exercise effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab 293, E197–E202.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, L., Weiss, E. P., Villareal, D. T., Klein, S. and Holloszy, J. O., 2008. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7, 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Francia, P., delli Gatti, C., Bachschmid, M., Martin-Padura, I., Savoia, C., Migliaccio, E., Pelicci, P. G., Schiavoni, M., Luscher, T. F., Volpe, M. and Cosentino, F., 2004. Deletion of p66she gene protects against age-related endothelial dysfunction. Circulation 110, 2889–2895.

    Article  PubMed  CAS  Google Scholar 

  • Gredilla, R., Sanz, A., Lopez-Torresm, M. et al., 2001. Caloric restriction decreases mitochondrial free radical generation at complex 1 and lowers oxidative damage to mitochondrial DNA in the rat heart. Faseb J 15, 1589–1591.

    PubMed  CAS  Google Scholar 

  • Groban, L., Pailes, N. A., Bennett, C. D., Carter, C. S., Chappel, M. C., Kitzman, D. W. and Sonntag, W. E., 2006. Growth hormone replacement attenuates diastolic dysfunction and cardiac angiotensin II expression in senescent rats. J Gerontol A Biol Sci Med Sci 61, 28–35.

    Article  PubMed  Google Scholar 

  • Guo, Z., Mitchell-Raymundo, F., Yang, H., Ikeno, Y., Nelson, J., Diaz, V., Richardson, A. and Reddick, R., 2002. Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoproteinE-deficient mice. Mech Ageing Dev 123, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z. M., Yang, H., Hamilton, M. L., VanRemmen, H. and Richardson, A., 2001. Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech Ageing Dev 122, 1771–1786.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, C. A., Brosnan, M. J., McIntyre, M., Graham, D. and Dominiczak, A. F., 2001. Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37, 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Han, D., Williams, D. and Cadenas, E., 2001. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Harper, M. E., Bevilacqua, L., Hagopian, K., Weindruch, R. and Ramsey, J. J., 2004. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 182, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn, L. K. and Clifton, P. M., 2002. C-reactive protein and coronary artery disease: influence of obesity, caloric restriction and weight loss. J Nutr Biochem 13, 316–321.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K. J., Lee, E. K., Kim, K. Y., Zou, Y., Sung, B., Heo, H. S., Kim., M. K., Lee, J., Kim, N. D., Yu, B. P. and Chung, H. Y., 2009. Effect of short-term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm Res 58, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Jung, S. H., Park, H. S., Kim, K. S., Choi, W. H., Ahn, C. W., Kim, B. T., Kim, S. M., Lee, S. Y., Ahn, S. M., Kim, Y. K., Kim, H. J., Kim, D. J. and Lee, K. W., 2008. Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem 19, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Kalani, R., Judge, S., Carter, C., Pahor, M. and Leeuwenburgh, C., 2006. Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6. J Gerontol A Biol Sci Med Sci 61, 211–217.

    Article  PubMed  Google Scholar 

  • Kemnitz, J. W., Roecker, E. B., Weindruch, R., Elson, D. F., Baum, S. T. and Bergman, R. N., 1994. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol 266, E540–E547.

    PubMed  CAS  Google Scholar 

  • Khan, A. S., Sane, D. C., Wannenburg, T. and Sonntag, W. E., 2002. Growth hormone; Insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 54, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. H., Kim, J. Y., Yu, B. P. and Chung, H. Y., 2008. The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by caloric restriction. Biogerontology 9, 33–47.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, M., Shibata, R., Miura, R., Shimano, M., Kondo, K., Li, P., Ohashi, T., Kihara, S., Maeda, N., Walsh, K., Ouchi., N. and Murohara, T., 2009. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J Biol Chem 284, 1718–1724.

    Article  PubMed  CAS  Google Scholar 

  • Lakatta, E. G., 2003. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation 107, 4090–4097.

    Google Scholar 

  • Lakatta, E. G. and Levy, D., 2003a. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146.

    Article  PubMed  Google Scholar 

  • Lakatta, E. G. and Levy, D., 2003b. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107, 346–354.

    Article  PubMed  Google Scholar 

  • Lambert, A. J. and Merry, B. J., 2004. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergenetics: reversal by insulin. Am J Physiol Regul Integr Conp Physiol 286, R71–R79.

    Article  CAS  Google Scholar 

  • Lass, A., Sohall, B. H., Weindruch, R., Forster, M. T. and Sohal, R. S., 1998. Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre, M., Redman, L. M., Heilbronn, L. K., Smith, J. V., Martin, C. K., Rood, J. C., Greenway, F. L., Williamson, D. A., Smith, S. R. and Ravussin, E., Pennington CALERIE team, 2009. Calorie restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 203, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • Leri, A., Liu, Y., Wang, X., Kajstura, J., Malhotra, A., Meggs, L. G. and Anversa, P., 1999. Overexpression of insulin-like growth factor-1 attenuates the myocyte renin-angiotensin system in transgenic mice. Circ Res 84, 1007–1019.

    Article  PubMed  Google Scholar 

  • Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., Kajstura, J., Baserga, R. and Anversa, P., 1997. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100, 1991–1999.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Mital, S., Ojaimi, C., Csiszar, A., Kaley, G. and Hinte, T. H., 2004. Premature death and age-related cardiac dysfunction in male eNOS-knockout mice. J Mol Cell Cardiol 37, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Setoguchi, M., Wang, X., Andreoli, A. M., Leri, A., Malhotra, A., Kajstura, J. and Anversa, P., 1999. Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction ob the heart. Circ Res 84, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Wu, S., Li, S. Y., Lopez, F. L., Du, M., Kajstura, J., Anversa, P. and Ren, J., 2007. Cardiac-specific overexpression of insulin-like growth factor-1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol Heart Circ Physiol 292, H1398–H1403.

    Article  PubMed  CAS  Google Scholar 

  • Libby, P., 2002. Inflammation in atherosclerosis. Nature 420, 868–874.

    Article  PubMed  CAS  Google Scholar 

  • Linford, N. J., Beyer, B. P., Gollahon, K., Krajcik, R. A., Malloy, V. L., Demas, V., Burrner, G. C. and Rabinovitch, P. S., 2007. Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell 6, 673–688.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez, C., Dietrich, M. O., Metzger, F., Loetscher, H. and Torres-Aleman, I., 2007. Disturbed cross-talk between insulin-like growth factor 1 and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’S disease. J Neurosci 27, 824–831.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., Gleiser, C. A., Masoro, E. J., Murata, I., McMahan, C. A. and Yu, B. P., 1985. Nutritional influences on aging of Fischer 344 rats: II. Pathology. J Gerontol 40, 671–688.

    Article  PubMed  CAS  Google Scholar 

  • Mattagajasingh, I., Kim, C. S., Naqvi, A., Yamamori, T., Hoffman, T. A., Jung, S. B., DeRicco, J. and Kasuno, K., 2007. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Nat Acad Sci USA 104, 14855–14860.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T. E., Kovacs, S. J., Ehsani, A. A., Klein, S., Holloszy, J. O. and Fontana, L., 2006. Long-term caloric restriction is highly effective in reducing the risk for atherosclerosis in humans. J Am Coll Cardiol 47, 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Miyaki, A., Maeda, S., Yoshizawa, M., Misono, M., Saito, Y., Sasai, H., Endo, T., NaKata, Y., Tanaka, K. and Ajisaka, R., 2008. Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology. E pub.

    Google Scholar 

  • Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L. et al., 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329.

    Article  PubMed  CAS  Google Scholar 

  • Niemann, B., Silber, R. E. and Rohrbach, S., 2008. Age-specific effects of short- and long- term caloric restriction on the expression of adiponectin and adiponectin receptors: influence of intensity of food restriction. Exp Gerontol 43, 706–713.

    Article  PubMed  CAS  Google Scholar 

  • Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clement, E., Moncada, S. and Carruba, M. O., 2005. Calorie restriction promotes mitochondrial biogenesis by inducing expression of eNOS. Science 310, 314–317.

    Article  PubMed  CAS  Google Scholar 

  • Ojaimi, C., Li, W., Kinugawa, S., Post, H., Csiszar, A., Packer, P., Kaley, G. and Hintze, F. H., 2005. Transcriptional basis for exercise limitation in male eNOS-knockout mice with age:heart failure and the fetal phenotype. Am J Physiol Heart Circ Physiol 289, H1399–H1407.

    Article  PubMed  CAS  Google Scholar 

  • Ouchi, N., Kihara, S., Arita, Y., Okamoto, Y., Maeda, K., Kuriyama, H., Hotta, K. et al. , 2000. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF- kappaB signaling through a cAMP-dependent pathway. Circulation 102, 1296–1301.

    Article  PubMed  CAS  Google Scholar 

  • Park, L., Anrather, J., Girouard, H., Zhou, P. and Iadecola, C., 2007. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27, 1908–1918.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L., Piper, M. D. and Mair, W., 2005. Dietary restriction in Drosophila. Mech Ageing Dev 126, 938–950.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. J., Baur, J. A., Lewis, K. N., Pushkin, L., Price, N. L., Labinsky, N., Swindel, W. R. et al., 2008a. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8, 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. J., Lewis, K. N., Price, N. L., Chang, J. W., Perez, E., Cascajo, M. V., Tamashiro, K. L. et al., 2008b. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA 105, 2325–2330.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, T. and Leeuwenberg, C., 2005. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19, 668–670.

    PubMed  CAS  Google Scholar 

  • Pierce, G. L., Beske, S. D.’, Lawson, B. R., Southall, K. L., Benay, F. J., Donato, A. J. and Seals, D. R., 2008. Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults. Hypertension 52, 72–79.

    Google Scholar 

  • Raitakari, M., Ilvonen, T., Ahotupa, M., Lehtimaki, T., Harmoinen, A., Suominen, P., Elo, J., Hartiala, J. and Raitakari, O. T., 2004. Weight reduction with very-low – caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscl Thromb Vasc Biol 24, 124–128.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, E. J., Goldin, A., Fulmer, N., Tavares, R., Wands, T. R. and de la Monte, S. M., 2005. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetyl choline. J Alzheimer’s Dis 8, 247–268.

    CAS  Google Scholar 

  • Rogina, B. and Helfand, S. L., 2004. Sir2 mediates longevity in the fly through a pathway related to caloric restriction. Proc Natl Acad Sci USA 101, 15998–16003.

    Article  PubMed  CAS  Google Scholar 

  • Roubenoff, R., Parise, H., Payette, H. A., Abad, L. W., D’Agostino., R., Jacques, P. F., Wilson, P. W., Dinarello, C. A. and Harris, T. B., 2003. Cytokines, insulin-like growth factor-1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med 115, 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, A., Gredilla, R., Pamplona, R., Portero-Otin, M., Vara, E., Tresguerres, J. A. and Banja, G., 2005. Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology 6, 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, S., Higashi, Y., Nakagawa, K., Kimura, M., Norma, K., Sasaki, S., Hara, K., Matsuura, H., Goto, C., Oshima, T. and Chimama, K., 2002. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypert 15, 302–209.

    Google Scholar 

  • Shinmura, K., Tamaki, K. and Bolli, R., 2008. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295, H2358–H2355.

    Google Scholar 

  • Shinmura, K., Tamaki, K., Saito, K., Nakano, Y., Tobe, T. and Bolli, R., 2007. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116, 2809–2817.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, R. S. and Weindruch, R., 1996. Oxidative stress, caloric restriction and aging. Science 273, 50–63.

    Article  Google Scholar 

  • Sonntag, W. E., Lynch, C. D., Cooney, P. T. and Hutchins, P. M., 1997. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-1. Endocrinology 138, 3515–3520.

    Article  PubMed  CAS  Google Scholar 

  • Sonntag, W. E., Lynch, C. D., Thornton, P., Khan, A., Bennett, S. and Ingram, R., 2000. The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anat 197(Pt 4), 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Spaulding, C. C., Walford, R. L. and Effros, R. B., 1997. Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev 93, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Suh, J. H., Shenvi, S. V., Dixon, B. M., Liu, H., Jaiswall, A. K., Liu, R. M. and Hagen, T. M., 2004. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101, 3381–3386.

    Article  PubMed  CAS  Google Scholar 

  • Sun, D., Huang, A., Yan, E. H., Wu, Z., Yan, C., Kaminski, P. M., Oury, T. D., Wolin, M. S. and Kaley, G., 2004. Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. Am J Physiol Heart Circ Physiol 286, H 2249–H2256.

    Article  Google Scholar 

  • Tatar, M., Bartke, A. and Antebi, A., 2003. The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351.

    Article  PubMed  CAS  Google Scholar 

  • Torella, D., Rota, M., Nurzynska, D., Nusso, E., Monsen, A., Shiraishi, I., Zias, E., Walsh, K., Rosenzweig, A., Sussman, M. A., Urbanek, K., Nadel-Ginard, B., Kajstura, J., Anversa, O. and Leri, A., 2004. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94, 514–524.

    Article  PubMed  CAS  Google Scholar 

  • Tschudi, M. R., Barton, M., Bersinger, N. A., Moreau, P., Coslentino, F., Noll, G., Malinski, T. and Luscher, T. F., 1996. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest 98, 899–905.

    Article  PubMed  CAS  Google Scholar 

  • Ungvari, Z., Csiszar., A. and Kaley, G., 2004. Vascular inflammation in Aging. Herz 29, 733–740.

    Article  PubMed  Google Scholar 

  • Ungvari, Z., Labinskyy, N., Gupte, S., Chander, P. N., Edwards, J. G. and Csiszar, A., 2008a. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol 294, H2121–H2128.

    Article  PubMed  CAS  Google Scholar 

  • Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K. and Csiszar, A., 2007a. Increased mitochondrial H2O2 production promotes endothelial NF-kB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293, H37–H47.

    Article  PubMed  CAS  Google Scholar 

  • Ungvari, Z., Orosz, Z., Rivera, A., Labinskyy, N., Xiangmin, Z., Olson, S., Podlutsky, A. and Csiszar, A., 2007b. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol 292, H2417–H2424.

    Article  PubMed  CAS  Google Scholar 

  • Ungvari, Z., Parrado-Fernandez, C., Csiszar, A. and de Cabo, R., 2008b. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102, 519–528.

    Article  PubMed  CAS  Google Scholar 

  • Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A. et al. , 2005. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97, 663–673.

    Article  PubMed  CAS  Google Scholar 

  • van der Loo, B., Labugger, R., Skepper, J. N., Bachschmid, M., Kilo, J., Powell, J. M., Pallacios-Callender, M., Erusalinsky, J. D., Quaschning, T., Malinski, T., Gygi, D., Ullrich, V. and Luscher, T. F., 2000. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192, 1731–1744.

    Article  PubMed  Google Scholar 

  • Verdery, R. B., Ingram, D. K., Roth, G. S. and Lane, M. A., 1997. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol 273, E714–E 719.

    Google Scholar 

  • Walford, R. L., Harris, S. B. and Gunion, M. W., 1992. The calorie restricted low-fat nutrient-dense diet in Biosphere-2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA 89, 11533–11537.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. and Tissenbaum, H. A., 2006. Overlapping and distant functions for a Caenorhabitis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Warabi, E., Takabe, W., Minami, T., Inoue, K., Itoh, K., Yamamoto, M., Ishii, T., Kodama, T. and Noguchi, N., 2007. Shear stress stabilizes NF-E2 related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/ nitrogen species. Free Radic Biol Med 42, 260–269.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., Rogina, B., Lavu, S., Howitz, Z., Helfand, S. L., Tatar, M. and Sinclair, D., 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689.

    Article  PubMed  CAS  Google Scholar 

  • Yang., H., Shi, M., Story, J., Richardson, A. and Guo, Z., 2004. Food restriction attenuates age-related increase in the sensitivity of endothelial cells to oxidized lipids. J Gerontol A Biol Sci Med Sci 59, 316–323.

    Article  PubMed  Google Scholar 

  • Yu, B. P., Masoro, E. J. and McMahon, C. A., 1985. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J Gerontol 40, 657–670.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q. J., Wang, Z., Chen, H. Z., Zhou, S., Zheng, W., Liu, G., Wei, Y. S., Cai, H., Liu, D. P. and Liang, C. C., 2008. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Zou, Y., Jung, K. J., Kim, J. W., Yu, B. P. and Chung, H. Y., 2004. Alteration of soluble adhesion molecules during aging and their modulation by calorie restriction. FASEB J 18, 320–322.

    PubMed  CAS  Google Scholar 

  • Zou, Y., Yoon, S., Jung, K. J., Kim, C. H., Son, T. G., Kim, Y. J., Lee, J., Yu, B. P. and Chung, H. Y., 2006. Upregulation of aortic adhesion molecules during aging. J Gerontol A Biol Sci Med Sci 61, 232–244.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Diabetes Association (to ZU), the American Federation for Aging Research (to AC), the NIH (HL077256 and HL43023 to ZU and AC) and the Intramural Research Program of the National Institute on Aging, NIH (to RDC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Csiszar, A., de Cabo, R., Ungvari, Z. (2010). Caloric Restriction and Cardiovascular Disease. In: Everitt, A., Rattan, S., le Couteur, D., de Cabo, R. (eds) Calorie Restriction, Aging and Longevity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8556-6_15

Download citation

Publish with us

Policies and ethics