Skip to main content

Ecology, Behavior and Evolution of Disease Resistance in Termites

  • Chapter
  • First Online:
Biology of Termites: a Modern Synthesis

Abstract

The nesting and feeding habits of termites create the risk of contact with microbial and invertebrate pathogens and parasites. Additionally, termite life history can result in cyclical decreases in nestmate genetic heterogeneity, increasing susceptibility to parasites, and sociality may elevate transmission rates of infection within colonies. Current research indicates that ecology and group living have selected for disease resistance in both basal and derived termite families, which have evolved diverse immune adaptations deployed sequentially or simultaneously at both individual and societal levels. These include inducible behavioral, biochemical, immunological and social mechanisms of infection control. Mortality from disease can be significant for reproductives, pseudergates and sterile castes, and influences colony fitness through impacts on colony size, demography, polymorphism, division of labor, communication, development, reproduction, colony foundation, and colony and population genetics. The hemimetabolic development, diplodiploid genetics, microbial symbioses and recalcitrant diets of termites present unique opportunities to model the effects of disease on immune function, including the adaptive design of immune molecules, life-history traits and social evolution. Comparisons can also be made between termite and hymenopteran immunocompetences, highlighting phylogenetic and ecological differences. We advocate a multidisciplinary approach to disease resistance in termites, focusing simultaneously on cellular and humoral immunity, antibiotic prophylaxis and social modes of infection control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148

    Google Scholar 

  • Adamo S, Jensen M, Younger M (2001) Changes in lifetime immunocompetence in male and female Gryllus taxensis (formerly G. integer): trade-offs between immunity and reproduction. Anim Behav 62:417–425

    Article  Google Scholar 

  • Adams ES, Atkinson L, Bulmer MS (2007) Relatedness, recognition errors, and colony fusion in the termite Nasutitermes corniger. Behav Ecol Sociobiol 61:1195–1201

    Article  Google Scholar 

  • Bartz SH (1979) Evolution of eusociality in termites. Proc Natl Acad Sci U S A 76:5764–5768

    Article  PubMed  CAS  Google Scholar 

  • Batra LR, Batra SWT (1966) Fungus-growing termites of tropical India and associated fungi. J Kans Entomol Soc 39:725–738

    Google Scholar 

  • Batra LR, Batra SWT (1979) Termite-fungus mutualism. In: Batra LR (ed) Insect-fungus symbiosis, nutrition, mutualisms, and commensalism. Wiley, New York, NY, pp 117–163

    Google Scholar 

  • Beattie A, Turnbull C, Hough T, Knox B (1986) Antibiotic production: a possible function for the metapleural gland of ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 79:448–450

    Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387

    Google Scholar 

  • Blackwell M, Rossi W (1986) Biogeography of fungal ectoparasites of termites. Mycotaxon 25:581–601

    Google Scholar 

  • Brossut R (1983) Allomonal secretions in cockroaches. J Chem Ecol 9:143–158

    Article  CAS  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The Prokaryotes: symbiotic associations, biotechnology, applied microbiology, vol 1. Springer, New York, NY, pp 439–474

    Google Scholar 

  • Bulmer MS, Bachelet I, Raman R et al (2009) Targeting antimicrobial effector function in insect immunity as a pest control strategy. Proc Natl Acad Sci U S A 106:12652–12657

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MS, Crozier RH (2004) Duplication and diversifying selection among termite antifungal peptides. Mol Biol Evol 21:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MS, Crozier RH (2006) Variation in positive selection in termite GNBPs and Relish. Mol Biol Evol 23:317–326

    Article  PubMed  CAS  Google Scholar 

  • Calleri DV, Reid E, Rosengaus RB et al (2006a) Inbreeding and disease resistance in a social insect: effects of genetic variation on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc Lond B 273:2633–2640

    Article  Google Scholar 

  • Calleri DV, Rosengaus RB, Traniello JFA (2005) Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: the survival advantage of nestmate pairs. Naturwissenschaften 92:300–304

    Article  PubMed  CAS  Google Scholar 

  • Calleri DV, Rosengaus RB, Traniello JFA (2006b) Disease and colony establishment in the dampwood termite Zootermopsis angusticollis: survival and fitness consequences of infection in primary reproductives. Insectes Soc 53:204–211

    Article  Google Scholar 

  • Calleri DV, Rosengaus RB, Traniello JFA (2007) Immunity and reproduction during colony foundation in the dampwood termite Zootermopsis angusticollis. Physiol Entomol 32:136–142

    Article  Google Scholar 

  • Calleri DV, Rosengaus RB, Traniello JFA (2010) Disease resistance in the drywood termite Incisitermes schwarzi (Isoptera: Kalotermitidae): does nesting ecology affect immunocompetence? J Insect Sci 10:Article 44

    Google Scholar 

  • Chen J, Henderson G, Grimm CC et al (1998a) Naphthalene in Formosan subterranean termite carton nests. J Agric Food Chem 46:2337–2339

    Article  CAS  Google Scholar 

  • Chen J, Henderson G, Grimms CC et al (1998b) Termites fumigate their nests with naphthalene. Nature 392:558–559

    Article  CAS  Google Scholar 

  • Choe D-H, Millar JG, Rust MK (2009) Chemical signals associated with life inhibit necrophoresis in Argentine ants. Proc Natl Acad Sci U S A 106:8251–8255

    Article  PubMed  CAS  Google Scholar 

  • Chouvenc T, Su N-Y, Robert A (2009a) Susceptibility of seven termite species (Isoptera) to the pathogenic fungus Metarhizium anisopliae. Sociobiology 54:723–748

    Google Scholar 

  • Chouvenc T, Su N-Y, Robert A (2009b) Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J Invertebr Pathol 101:130–136

    Article  PubMed  CAS  Google Scholar 

  • Corby-Harris V, Pontaroli AC, Shimkets LJ et al (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73:3470–3479

    Article  PubMed  CAS  Google Scholar 

  • Cremer S, Armitage S, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702

    Article  PubMed  CAS  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B 364:129–142

    Article  Google Scholar 

  • Crosland MWJ, Traniello JFA (1997) Behavioral plasticity in division of labor in the lower termite Reticulitermes fukienensis. Naturwissenschaften 84:208–211

    Article  CAS  Google Scholar 

  • Cruse A (1998) Termite defences against microbial pathogens. PhD Thesis, Macquarie University, Australia

    Google Scholar 

  • Da Silva P, Jouvensal L, Lamberty M et al (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12:438–446

    Article  PubMed  CAS  Google Scholar 

  • De Souza DJ, Van Vlaenderen J, Moret Y, Lenoir A (2008) Immune response affects ant trophallactic behaviour. J Insect Physiol 54:828–832

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4:e229

    Article  PubMed  CAS  Google Scholar 

  • Dunn PE (1990) Humoral immunity in insects. BioScience 40:738–744

    Article  Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–54

    Google Scholar 

  • Faulhaber LM, Karp RD (1992) A diphasic immune response against bacteria in the American cockroach. Immunology 75:378–381

    PubMed  CAS  Google Scholar 

  • Fefferman NH, Traniello JFA (2009) Social insects as models in epidemiology: establishing the foundation for an interdisciplinary approach to disease and sociality. In: Gadau J, Fewell J (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, MA, pp 545–571

    Google Scholar 

  • Fefferman NH, Traniello JFA, Rosengaus RB, Calleri DV (2007) Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior and colony organization. Behav Ecol Sociobiol 61:565–577

    Article  Google Scholar 

  • Fei HX, Henderson G (2003) Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera, Rhinotermitidae). Insectes Soc 50:226–233

    Article  Google Scholar 

  • Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1998) Trade-offs constraining the evolution of Drosophila melanogaster defence against attack by the parasitoid Leptopilina boulardi. Proc R Soc Lond B 265:1553–1558

    Article  CAS  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc Lond B 273:1689–1695

    Article  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  • Haine ER, Moret Y, Siva-Jothy M, Rolff J (2008a) Antimicrobial defense and persistent infection in insects. Science 322:1257–1259

    Article  PubMed  CAS  Google Scholar 

  • Haine ER, Pollitt LC, Moret Y et al (2008b) Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J Insect Physiol 54:1090–1097

    Article  PubMed  CAS  Google Scholar 

  • Hendee EC (1933) The association of the termites, Kalotermes minor, Reticulitermes hesperus, and Zootermopsis angusticollis with fungi. Univ Calif Publ Zool 39:111–134

    Google Scholar 

  • Hendee EC (1934) The association of termites and fungi. In: Kofoid CA (ed) Termites and termite control. Berkeley University, Berkeley, CA, pp 105–116

    Google Scholar 

  • Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 22:672–677

    Article  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  CAS  Google Scholar 

  • Jackson DE, Hart AG (2009) Does sanitation facilitate sociality? Anim Behav 77:e1–e5

    Article  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  • Jiggins FM, Hurst GD (2003) The evolution of parasite recognition genes in the innate immune system: purifying selection on Drosophila melanogaster peptidoglycan recognition proteins. J Mol Evol 57:598–605

    Article  PubMed  CAS  Google Scholar 

  • Jiggins FM, Kim KW (2005) The evolution of antifungal peptides in Drosophila. Genetics 171:1847–1859

    Article  PubMed  CAS  Google Scholar 

  • Jiggins FM, Kim KW (2006) Contrasting evolutionary patterns in Drosophila immune receptors. J Mol Evol 63:769–780

    Article  PubMed  CAS  Google Scholar 

  • John TJ, Samuel R (2000) Herd immunity and herd effect: new insights and definitions. Eur J Epidemiol 16:601–606

    Article  PubMed  CAS  Google Scholar 

  • Karp RD, Duwel LE, Faulhaber LM, Harju MA (1994) Evolution of adaptive immunity: inducible responses in the American cockroach. Ann N Y Acad Sci 712(1):82–91

    Article  PubMed  CAS  Google Scholar 

  • Karp RD, Duwel-Eby LE (1991) Adaptive immune responses in insects. In: Warr GW, Cohen N (eds) Phylogenesis of immune functions. CRC, Boca Raton, FL, pp 1–18

    Google Scholar 

  • Kirchner WH, Minkley N (2003) Nestmate discrimination in the harvester termite Hodotermes mossambicus. Insectes Soc 50:222–225

    Article  Google Scholar 

  • Kramm KR, West DF, Rockenbach PG (1982) Termite pathogens: transfer of the entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. J Invertebr Pathol 40:1–6

    Article  Google Scholar 

  • Lamberty M, Zachary D, Lanot R et al (2001) Insect immunity – constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Le Guyader A, Rivault C, Chaperon J (1989) Microbial organisms carried by brown-banded cockroaches in relation to their spatial distribution in a hospital. Epidemiol Infect 102:485–492

    Article  PubMed  Google Scholar 

  • Little TJ, O’Connor B, Colegrave N et al (2003) Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 13(6):489–492

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Engel MS, Cameron S et al (2007) Save Isoptera: A comment on Inward et al. Biol Lett 3:562–563

    Article  PubMed  Google Scholar 

  • Logan JWM, Cowie RH, Wood TG (1990) Termite (Isoptera) control in agriculture and forestry by non-chemical methods: a review. Bull Entomol Res 80:309–330

    Article  Google Scholar 

  • Lutikova LI (1990) The influence of soil substrates from the Anacanthotermes ahngerianus Jac. termite-house on the development of entomopathogenic fungi. Mycol Phytopathol 24:520–528

    Google Scholar 

  • Maschwitz U (1974) Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldrüse. Oecologia 16:303–310

    Article  Google Scholar 

  • Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Article  Google Scholar 

  • Matsuura K, Tamura T, Kobayashi N et al (2007) The antibacterial protein lysozyme identified as the termite egg recognition pheromone. PLoS ONE 2:e813. 10.137/journal.pone.0000813

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Vargo EL, Kawatsu K et al (2009a) Queen succession through asexual reproduction in termites. Science 323:1687

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Yashiro T, Shimizu K et al (2009b) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr Biol 19:1–7

    Article  CAS  Google Scholar 

  • Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Soc 53:339–344

    Article  Google Scholar 

  • Miramontes O, DeSouza O (2008) Individual basis for collective behavior in the termite, Cornitermes cumulans. J Insect Sci 8:1–11

    Article  PubMed  Google Scholar 

  • Moret Y (2006) Trans-generational immune priming: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 273:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Naug D, Camazine S (2002) The role of colony organization on pathogen transmission in social insects. J Theor Biol 215:427–439

    Article  PubMed  Google Scholar 

  • Noirot C (1969) Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press Inc, New York, NY, pp 89–123

    Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y et al (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termite and the cockroach Cryptocercus. Proc R Soc Lond B 276:239–245

    Article  CAS  Google Scholar 

  • Owens IPF, Wilson K (1999) Immunocompetence: a neglected life history trait or conspicuous red herring? Trends Ecol Evol 14:170–172

    Article  Google Scholar 

  • Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 193–215

    Google Scholar 

  • Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3(3):e26

    Article  PubMed  CAS  Google Scholar 

  • Pie MR, Rosengaus RB, Calleri DV, Traniello JFA (2005) Density and disease resistance in group-living insects: do eusocial species exhibit density-dependent prophylaxis? Ethol Ecol Evol 17:41–50

    Article  Google Scholar 

  • Pie MR, Rosengaus RB, Traniello JFA (2004) Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol 226(1):45–51

    Article  PubMed  Google Scholar 

  • Polz MF, Harbison C, Cavanaugh CM (1999) Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode Eubostrichus dianae. Appl Environ Microbiol 65:4271–4275

    PubMed  CAS  Google Scholar 

  • Reeson AF, Wilson K, Gunn A et al (1998) Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proc R Soc Lond B 265:1787–1791

    Article  Google Scholar 

  • Rheins LA, Karp RD (1985) Ontogeny of the invertebrate humoral immune response: studies on various developmental stages of the American cockroach (Periplaneta americana). Dev Comp Immunol 9:395–406

    Article  PubMed  CAS  Google Scholar 

  • Rich S (1969) Quinones. In: Torgeson DC (ed) Fungicides: an advanced treatise, vol 2. Academic Press Inc, New York, NY, pp 647–648

    Google Scholar 

  • Rolff J, Siva-Jothy MT (2002) Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci U S A 99:9916–9918

    Article  PubMed  CAS  Google Scholar 

  • Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469

    Article  PubMed  CAS  Google Scholar 

  • Rosengaus RB, Cornelisse T, Guschanski K, Traniello JFA (2007) Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94:25–33

    Article  PubMed  CAS  Google Scholar 

  • Rosengaus RB, Guldin MR, Traniello JFA (1998a) Inhibitory effect of termite fecal pellets on fungal spore germination. J Chem Ecol 24:1697–1706

    Article  CAS  Google Scholar 

  • Rosengaus RB, Lefebvre ML, Carlock DM, Traniello JFA (2000a) Socially transmitted disease in adult reproductive pairs of the dampwood termite Zootermopsis angusticollis. Ethol Ecol Evol 12:419–433

    Article  Google Scholar 

  • Rosengaus RB, Lefebvre ML, Jordan C, Traniello JFA (1999a) Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86:544–548

    Article  PubMed  CAS  Google Scholar 

  • Rosengaus RB, Lefebvre ML, Traniello JFA (2000b) Inhibition of fungal spore germination by Nasutitermes: evidence for a possible antiseptic role of soldier defensive secretions. J Chem Ecol 26:21–39

    Article  CAS  Google Scholar 

  • Rosengaus RB, Maxmen AM, Coates LE, Traniello JFA (1998b) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Article  Google Scholar 

  • Rosengaus RB, Moustakas JE, Calleri DV, Traniello JFA (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J Insect Sci 3:31

    PubMed  Google Scholar 

  • Rosengaus RB, Traniello JFA (1991) Biparental care in incipient colonies of the dampwood termite Zootermopsis angusticollis Hagen (Isoptera:Termopsidae). J Insect Behav 4:633–647

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA (1993a) Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: a single multi-age caste. J Insect Behav 6:237–252

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA (1993b) Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc Natl Acad Sci U S A 90:6641–6645

    Article  PubMed  CAS  Google Scholar 

  • Rosengaus RB, Traniello JFA (1997) Pathobiology and disease transmission in dampwood termites Zootermopsis angusticollis (Isoptera: Termopsidae) infected with the fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes). Sociobiology 30:185–195

    Google Scholar 

  • Rosengaus RB, Traniello JFA (2001) Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav Ecol Sociobiol 50:546–556

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA, Chen T et al (1999b) Immunity in a social insect. Naturwissenschaften 86:588–591

    Article  CAS  Google Scholar 

  • Rosengaus RB, Traniello JFA, Lefebvre ML, Maxmen AB (2004) Fungistatic activity of the sternal gland secretion of the dampwood termite Zootermopsis angusticollis. Insectes Soc 51:1–6

    Article  Google Scholar 

  • Rowley AF, Powell A (2007) Invertebrate immune systems–specific, quasi-specific, or nonspecific? J Immunol 179:7209–7214

    PubMed  CAS  Google Scholar 

  • Ryu JH, Kim SH, Lee HY et al (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  PubMed  CAS  Google Scholar 

  • Sackton TB, Lazzaro BP, Schlenke TA et al (2007) Dynamic evolution of the innate immune system in Drosophila. Nature Genetics 39:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P (2005) Trans-generational immune priming in a social insect. Biol Lett 1:386–388

    Article  PubMed  Google Scholar 

  • Sadd BM, Schmid-Hempel P (2007) Facultative but persistent trans-generational immunity via the mother’s eggs in bumblebees. Curr Biol 17:1046–1047

    Article  CAS  Google Scholar 

  • Sands WL (1969) The association of termites and fungi. In: Krishna K, and Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, NY, pp 495–524

    Google Scholar 

  • Schlüns H, Crozier R (2009) Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol News 12:237–249

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B 270:357–366

    Article  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18:27–32

    Google Scholar 

  • Sen R, Ishak HD, Estrada D et al (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci U S A 106:17805–17810

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:217–321

    Article  Google Scholar 

  • Shellman-Reeve JS (1990) Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): Response to nitrogen availability. Behav Ecol Sociobiol 26:389–397

    Article  Google Scholar 

  • Shellman-Reeve JS (1997) Advantages of biparental care in the wood-dwelling termite, Zootermopsis nevadensis. Anim Behav 54:163–170

    Article  PubMed  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. Adv Insect Physiol 32:1–48

    Article  CAS  Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper R, Plaistow SJ (2001) Immune function in the face of chronic and acute parasite burdens. Physiol Entomol 26:1–6

    Article  Google Scholar 

  • Stow A, Briscoe D, Gillings M et al (2007) Antimicrobial defences increase with sociality in bees. Biol Lett 3:422–424

    Article  PubMed  Google Scholar 

  • Stuart AM (1969) Social behavior and communication. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic, New York, NY, pp 193–232

    Google Scholar 

  • Söderhall K, Cerenius L (1998) Role of prophenoloxidase activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  PubMed  Google Scholar 

  • Thomas RJ (1987) Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera). Soil Biol Biochem 19:343–349

    Article  Google Scholar 

  • Thompson GJ, Crozier YC, Crozier RH (2003) Isolation and characterization of a termite transferrin gene up-regulated on infection. Insect Mol Biol 12:1–7

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Article  Google Scholar 

  • Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77–93

    Google Scholar 

  • Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Article  Google Scholar 

  • Traniello JFA, Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci U S A 99:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Viljakainen L, Evans JD, Hasselmann M et al (2009) Rapid evolution of immune proteins in social insects. Mol Biol Evol 26:1791–1801

    Article  PubMed  CAS  Google Scholar 

  • Waller DA, LaFage JP (1987) Nutritional ecology of termites. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of insects, mites and spiders. Wiley, New York, NY, pp 487–532

    Google Scholar 

  • Wang C, Powell JE, O’Connor BM (2002) Mites and nematodes associated with three subterranean termite species (Isoptera: Rhinotermitidae). Fla Entomol 85:499–506

    Article  Google Scholar 

  • Watson FL, Püttmann-Holgado R, Thomas F et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Cotter SC (2008) Density-dependent prophylaxis in insects. In: Ananthakrishnan TN, Whitman DW (eds) Insects and phenotypic plasticity: mechanisms and consequences. Science Publishers Inc, Plymouth, pp 137–176

    Google Scholar 

  • Wilson K, Reeson AF (1998) Density-dependent prophylaxis: evidence from Lepidoptera-baculovirus interactions. Ecol Entomol 23:100–101

    Article  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Rich N, Stuart RJ, Rosengaus RB (2007) Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematode Steinernema carpocapsae. J Invertebr Pathol 95:17–25

    Article  PubMed  Google Scholar 

  • Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, San Diego, CA, pp 69–92

    Chapter  Google Scholar 

  • Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52:75–85

    Article  Google Scholar 

  • Yanagawa A, Yokohari F, Shimizu S (2009) The role of antennae in removing entomopathogenic fungi from the cuticle of the termite, Coptotermes formosanus. J Insect Sci 9:6

    Article  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556

    PubMed  CAS  Google Scholar 

  • Zhao C, Rickards RW, Trowell SC (2004) Antibiotics from Australian terrestrial invertebrates. Part 1: Antibacterial trinervitadienes from the termite Nasutitermes triodiae. Tetrahedron 60:10753–10759

    Article  CAS  Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenneth Grace for noting useful references and Brian Lejeune for help with formatting. This work was supported by an NSF CAREER Development grant (DEB-0447316) to RB Rosengaus and NSF IBN-9632134 and IBN-0116857 to JFA Traniello and JFA Traniello and RB Rosengaus, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca B. Rosengaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Rosengaus, R.B., Traniello, J.F., Bulmer, M.S. (2010). Ecology, Behavior and Evolution of Disease Resistance in Termites. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_7

Download citation

Publish with us

Policies and ethics