Skip to main content

Mechanisms of Cancer Growth and Progression in Lymphoma

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

Abstract

B-cell lymphomas often recapitulate the stages of normal lymphocyte differentiation as shown by molecular techniques such as gene-expression profiling. This similarity is a major basis for B-cell lymphoma classification and nomenclature. B-cell development is a central component of the adaptive immune response. B-cell differentiation begins as progenitor B-cells undergo immunoglobulin gene rearrangement and differentiate into naive B-cells that express surface immunoglobulin molecule. Upon antigen encounter, naïve B-cells undergo transformation and ultimately differentiation into memory B cells or antibody secreting plasma cells, primarily through germinal centers of the secondary lymphoid tissue. These developmental stages are influenced by extrinsic signals, interaction with cellular elements and microenvironment, and controlled by transcriptional regulation. Aberrations during B-cell development, activation and differentiation, particularly during the germinal centre (GC) reaction, can lead to oncogenic chromosomal translocations that block differentiation, prevent apoptosis or promote proliferation. Unregulated extrinsic signals including cytokines and antigenic stimulation can further contribute to progression of malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe EH, Harris NL Stein, H, Vardiman, JW. Pathology and Genetics of Tumours of the Hematopoietic and Lymphoid Tissue. IARC Press, Lyon, 2001.

    Google Scholar 

  2. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol 1998;16(8);2780–95.

    CAS  PubMed  Google Scholar 

  3. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood 1997;89(11);3909–18.

    Google Scholar 

  4. Denning SM, Haynes BF. Differentiation of human T cells. Clin Lab Med 1988;8(1);1–14.

    CAS  PubMed  Google Scholar 

  5. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev 2004;197:179–91.

    Article  PubMed  Google Scholar 

  6. Bertoli LF, Kubagawa H, Borzillo GV, Burrows PD, Schreeder MT, Carroll AJ, et al. Bone marrow origin of a B-cell lymphoma. Blood 1988;72(1);94–101.

    CAS  PubMed  Google Scholar 

  7. Cooper MD. Current concepts. B lymphocytes. Normal development and function. N Engl J Med 1987;317(23);1452–6.

    Article  CAS  PubMed  Google Scholar 

  8. Tonegawa S. Somatic generation of antibody diversity. Nature 1983;302(5909);575–81.

    Article  CAS  PubMed  Google Scholar 

  9. Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996;381(6585);751–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997;90(6);1073–83.

    Article  CAS  PubMed  Google Scholar 

  11. Nussenzweig MC. Immune receptor editing: revise and select. Cell 1998;95(7);875–8.

    Article  CAS  PubMed  Google Scholar 

  12. Roulland S, Suarez F, Hermine O, Nadel B. Pathophysiological aspects of memory B-cell development. Trends Immunol 2008;29(1);25–33.

    Article  CAS  PubMed  Google Scholar 

  13. Berek C, Berger A, Apel M. Maturation of the immune response in germinal centers. Cell 1991;67(6);1121–9.

    Article  CAS  PubMed  Google Scholar 

  14. Harris N. Tumours of Haematopoietic and Lymphoild Tissues; 2001.

    Google Scholar 

  15. Klein U, Goossens T, Fischer M, Kanzler H, Braeuninger A, Rajewsky K, et al. Somatic hypermutation in normal and transformed human B cells. Immunol Rev 1998;162:261–80.

    Article  CAS  PubMed  Google Scholar 

  16. Hummel M, Tamaru J, Kalvelage B, Stein H. Mantle cell (previously centrocytic) lymphomas express VH genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood 1994;84(2);403–7.

    CAS  PubMed  Google Scholar 

  17. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998;102(8);1515–25.

    Article  CAS  PubMed  Google Scholar 

  18. Du MQ, Diss TC, Xu CF, Wotherspoon AC, Isaacson PG, Pan LX. Ongoing immunoglobulin gene mutations in mantle cell lymphomas. Br J Haematol 1997;96(1);124–31.

    Article  CAS  PubMed  Google Scholar 

  19. Pittaluga S, Tierens A, Pinyol M, Campo E, Delabie J, De Wolf-Peeters C. Blastic variant of mantle cell lymphoma shows a heterogenous pattern of somatic mutations of the rearranged immunoglobulin heavy chain variable genes. Br J Haematol 1998;102(5);1301–6.

    Article  CAS  PubMed  Google Scholar 

  20. Klein U, Rajewsky K, Kuppers R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998;188(9);1679–89.

    Article  CAS  PubMed  Google Scholar 

  21. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008;8(1);22–33.

    Article  CAS  PubMed  Google Scholar 

  22. Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH, Falini B, et al. BCL-6 protein is expressed in germinal-center B cells. Blood 1995;86(1);45–53.

    CAS  PubMed  Google Scholar 

  23. Harris NL, Nadler LM, Bhan AK. Immunohistologic characterization of two malignant lymphomas of germinal center type (centroblastic/centrocytic and centrocytic) with monoclonal antibodies. Follicular and diffuse lymphomas of small-cleaved-cell type are related but distinct entities. Am J Pathol 1984;117(2);262–72.

    CAS  PubMed  Google Scholar 

  24. MacLennan IC. Germinal centers. Annu Rev Immunol 1994;12:117–39.

    Article  CAS  PubMed  Google Scholar 

  25. MacLennan IC, Liu YJ, Oldfield S, Zhang J, Lane PJ. The evolution of B-cell clones. Curr Top Microbiol Immunol 1990;159:37–63.

    CAS  PubMed  Google Scholar 

  26. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A 1998;95(20);11816–21.

    Article  CAS  PubMed  Google Scholar 

  27. Bahler DW, Levy R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci U S A 1992;89(15);6770–4.

    Article  CAS  PubMed  Google Scholar 

  28. Klein U, Klein G, Ehlin-Henriksson B, Rajewsky K, Kuppers R. Burkitt’s lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes. Mol Med 1995;1(5);495–505.

    CAS  PubMed  Google Scholar 

  29. Butcher EC. Warner-Lambert/Parke-Davis Award lecture. Cellular and molecular mechanisms that direct leukocyte traffic. Am J Pathol 1990;136(1);3–11.

    CAS  PubMed  Google Scholar 

  30. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994;84(5);1361–92.

    CAS  PubMed  Google Scholar 

  31. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403(6769);503–11.

    Article  CAS  PubMed  Google Scholar 

  32. Stevenson FK, Sahota SS, Ottensmeier CH, Zhu D, Forconi F, Hamblin TJ. The occurrence and significance of V gene mutations in B cell-derived human malignancy. Adv Cancer Res 2001;83:81–116.

    Article  CAS  PubMed  Google Scholar 

  33. Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med 1999;341(20);1520–9.

    Article  CAS  PubMed  Google Scholar 

  34. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000;96(3);808–22.

    CAS  PubMed  Google Scholar 

  35. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001;20(40);5580–94.

    Article  CAS  PubMed  Google Scholar 

  36. Meffre E, Papavasiliou F, Cohen P, de Bouteiller O, Bell D, Karasuyama H, et al. Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells. J Exp Med 1998;188(4);765–72.

    Article  CAS  PubMed  Google Scholar 

  37. Han S, Dillon SR, Zheng B, Shimoda M, Schlissel MS, Kelsoe G. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 1997;278(5336);301–5.

    Article  CAS  PubMed  Google Scholar 

  38. Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 1996;274(5295);2094–7.

    Article  CAS  PubMed  Google Scholar 

  39. Goossens T, Klein U, Kuppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 1998;95(5);2463–8.

    Article  CAS  PubMed  Google Scholar 

  40. Muschen M, Re D, Jungnickel B, Diehl V, Rajewsky K, Kuppers R. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med 2000;192(12);1833–40.

    Article  CAS  PubMed  Google Scholar 

  41. Migliazza A, Martinotti S, Chen W, Fusco C, Ye BH, Knowles DM, et al. Frequent somatic hypermutation of the 5’ noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A 1995;92(26);12520–4.

    Article  CAS  PubMed  Google Scholar 

  42. Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 1998;92(9);3018–24.

    CAS  PubMed  Google Scholar 

  43. Gelmann EP, Clanton DJ, Jariwalla RJ, Rosenthal LJ. Characterization and location of myc homologous sequences in human cytomegalovirus DNA. Proc Natl Acad Sci U S A 1983;80(16);5107–11.

    Article  CAS  PubMed  Google Scholar 

  44. Dalla-Favera R, Westin E, Gelmann EP, Martinotti S, Bregni M, Wong-Staal F, et al. The human onc gene c-myc: structure, expression, and amplification in the human promyelocytic leukemia cell line HL-60. Haematol Blood Transfus 1983;28:247–54.

    CAS  PubMed  Google Scholar 

  45. McKeithan TW, Takimoto GS, Ohno H, Bjorling VS, Morgan R, Hecht BK, et al. BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study. Genes Chromosomes Cancer 1997;20(1);64–72.

    Article  CAS  PubMed  Google Scholar 

  46. Baron BW, Nucifora G, McCabe N, Espinosa R, 3rd, Le Beau MM, McKeithan TW. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc Natl Acad Sci U S A 1993;90(11);5262–6.

    Article  CAS  PubMed  Google Scholar 

  47. Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC, et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996;88(11);4110–7.

    CAS  PubMed  Google Scholar 

  48. Deyrup AT. Epstein-Barr virus-associated epithelial and mesenchymal neoplasms. Hum Pathol 2008;39(4);473–83.

    Article  CAS  PubMed  Google Scholar 

  49. Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 2003;3(10);801–12.

    Article  PubMed  Google Scholar 

  50. Magrath I. The pathogenesis of Burkitt’s lymphoma. Adv Cancer Res 1990;55:133–270.

    Article  CAS  PubMed  Google Scholar 

  51. Brady G, MacArthur GJ, Farrell PJ. Epstein-Barr virus and Burkitt lymphoma. J Clin Pathol 2007;60(12);1397–402.

    CAS  PubMed  Google Scholar 

  52. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005;436(7052);807–11.

    Article  CAS  PubMed  Google Scholar 

  53. Laurent C, Meggetto F, Brousset P. Human herpesvirus 8 infections in patients with immunodeficiencies. Hum Pathol 2008;39(7);983–93.

    Article  CAS  PubMed  Google Scholar 

  54. Raphael M. World Health Organization Classification of Tumors Pathology and genetics of Tumours of the Haematopoietic and Lymphoid Tisuue; 2001, IARC, Lyon.

    Google Scholar 

  55. Guasparri I, Keller SA, Cesarman E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004;199(7);993–1003.

    Article  CAS  PubMed  Google Scholar 

  56. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 1996;88(2);645–56.

    CAS  PubMed  Google Scholar 

  57. Vaandrager JW, Schuuring E, Kluin-Nelemans HC, Dyer MJ, Raap AK, Kluin PM. DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood 1998;92(8);2871–8.

    CAS  PubMed  Google Scholar 

  58. Suarez F, Lortholary O, Hermine O, Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 2006;107(8);3034–44.

    Article  CAS  PubMed  Google Scholar 

  59. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991;338(8776);1175–6.

    Article  CAS  PubMed  Google Scholar 

  60. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 1996;178(2);122–7.

    Article  CAS  PubMed  Google Scholar 

  61. Ferry JA. Extranodal lymphoma. Arch Pathol Lab Med 2008;132(4);565–78.

    PubMed  Google Scholar 

  62. Ehrenfeld M, Abu-Shakra M, Buskila D, Shoenfeld Y. The dual association between lymphoma and autoimmunity. Blood Cells Mol Dis 2001;27(4);750–6.

    Article  CAS  PubMed  Google Scholar 

  63. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005;5(4);251–62.

    Article  PubMed  Google Scholar 

  64. Voulgarelis M, Moutsopoulos HM. Malignant lymphoma in primary Sjogren’s syndrome. Isr Med Assoc J 2001;3(10);761–6.

    CAS  PubMed  Google Scholar 

  65. Shaffer AL, Rosenwald A, Hurt EM, Giltnane JM, Lam LT, Pickeral OK, et al. Signatures of the immune response. Immunity 2001;15(3);375–85.

    Article  CAS  PubMed  Google Scholar 

  66. Levens D. Disentangling the MYC web. Proc Natl Acad Sci U S A 2002;99(9);5757–9.

    Article  CAS  PubMed  Google Scholar 

  67. Ye BH, Cattoretti G, Shen Q, Zhang J, Hawe N, de Waard R, et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 1997;16(2);161–70.

    Article  CAS  PubMed  Google Scholar 

  68. Weiss LM, Warnke RA, Sklar J, Cleary ML. Molecular an- alysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987;317(19);1185–9.

    Article  CAS  PubMed  Google Scholar 

  69. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999;93(11);3601–9.

    CAS  PubMed  Google Scholar 

  70. Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 1983;219(4587);963–7.

    Article  CAS  PubMed  Google Scholar 

  71. Akasaka T, Akasaka H, Ueda C, Yonetani N, Maesako Y, Shimizu A, et al. Molecular and clinical features of non-Burkitt’s, diffuse large-cell lymphoma of B-cell type associated with the c-MYC/immunoglobulin heavy-chain fusion gene. J Clin Oncol 2000;18(3);510–18.

    CAS  PubMed  Google Scholar 

  72. Maeshima AM, Omatsu M, Nomoto J, Maruyama D, Kim SW, Watanabe T, et al. Diffuse large B-cell lymphoma after transformation from low-grade follicular lymphoma: morphological, immunohistochemical, and FISH analyses. Cancer Sci 2008;99(9);1760–8.

    Article  CAS  PubMed  Google Scholar 

  73. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000;13(2);199–212.

    Article  CAS  PubMed  Google Scholar 

  74. Delves PJ, Roitt IM. The immune system: first of two parts. N Engl J Med, July 6, 2000;343(1);37–49.

    Article  CAS  Google Scholar 

  75. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol 2002;2(12);920–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojdeh Naghashpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Naghashpour, M., Moscinski, L.C. (2010). Mechanisms of Cancer Growth and Progression in Lymphoma. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics