Skip to main content

Phytoremediation of Low Level Nuclear Waste

  • Chapter

Abstract

Waste, by definition, is any material (solid materials such as process residues as well as liquid and gaseous effluents) that has been or will be discarded as being of no further use. Radioactive waste is a waste product containing radioactive material. It is usually the product of a nuclear process such as nuclear fission. However, industries not directly connected to the nuclear industry may also produce radioactive waste. The majority of radioactive waste is "low-level waste", meaning it contains low levels of radioactivity per mass or volume. The radiation from this type of waste is protected by use of protective clothing, but still dangerous radioactive contamination occurs in a human body through ingestion, inhalation, absorption, or injection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anamika, S., Eapen, S. and Fulekar, M.H. (2008). Potential of Medicago sativa for uptake of cadmium from contaminated environment. Roumanian Biotech. Letters, 13(6): 4054-4059.

    Google Scholar 

  • Anamika, S., Eapen, S. and Fulekar, M.H. (2009). Phytoremediation of cadmium, lead and zinc by Indian mustard. Journal of Applied Biosciences, Kenya, 13: 726-736.

    Google Scholar 

  • Anamika, S., Eapen, S. and Fulekar, M.H. (2009). Phytoremediation techniques for remediation of radiostrontium (90Sr) and radiocesium (137Cs) in aquatic environment by Catharanthus roseus (L.) G. Don. Environment Engineering and Management Journal, Romania, 8(3): 527-532.

    Google Scholar 

  • Andrade, J.C.M. and Mahler, C.F. (2002). Soil Phytoremediation. 4th International Conference on Engineering Geotechnology. Rio de Janerio, Brazil.

    Google Scholar 

  • Chaudhury, B.A. and Chandra, R.K. (1987). Biological and health implications of toxic heavy metals and essential trace element interactions. Progr. Food Nutr., 11: 55-113.

    Google Scholar 

  • Cui, Y., Wang, Q. and Christie, P. (2004). Effect of elemental sulphur on uptake of cadmium, zinc and sulphur by oilseed Rape growing in soil contaminated with zinc and cadmium. Communications in Soil Sciences and Plant Analysis, 35: 2905-2916.

    Article  CAS  Google Scholar 

  • Cunningham, S.D., Berti, W.R. and Huang, J.W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13: 393-397.

    Article  CAS  Google Scholar 

  • Devaney, J.J. (1998). More on radioactive waste disposal: Other approaches proposed, discussed. Physics Today, 51(1): 87.

    Google Scholar 

  • Dushenkov, S., Mikheev, A., Prokhnevsky, A., Ruchko, M. and Sorochinsky, B. (1999). Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ. Sci. Technol., 33: 469-475.

    Article  CAS  Google Scholar 

  • Eapen, S., Suseelan, K.N., Tivarekar, S., Kotwal, S. and Mitra, R. (2003). Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amar anticolor, Environ. Res., 127: 127-133.

    Article  Google Scholar 

  • Eapen, S., Singh, S., Thorat, V., Kaushik, C.P., Raj, K. and D'Souza, S.F. (2006). l'XI l'XI Phytoremediation of radiostrontium ( Sr) and radiocesium ( Cs) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere, 65: 2071-2073.

    Google Scholar 

  • Flathman, P.E. and Lanza, G.R. (1998). Phytoremediation: Current views on an emerging green technology. Journal of Soil Contamination, 7(4): 415-432.

    Article  Google Scholar 

  • Fulekar, M.H. (2005). Environmental Biotechnology. Oxford & IBH Publishing, New Delhi.

    Google Scholar 

  • Fulekar, M.H. (2009). Environmental Biotechnology. Science Publisher, USA.

    Google Scholar 

  • Fulekar, M.H. (2010). Environmental Biotechnology. CRC Press and Science Publisher, USA.

    Google Scholar 

  • Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In: Prasad, M.N.V. (ed.), Heavy Metal Stress in Plants from Biomolecules to Ecosystems. Second ed. Springer-Verlag, Berlin, pp. 1-27.

    Google Scholar 

  • Howard, B.J., Beresford, N.A. and Hove, K. (1991). Transfer of radiocaesium to ruminants in natural and semi-natural ecosystems and appropriate countermeasures. Health Physics, 61: 715-725.

    Article  CAS  Google Scholar 

  • http://en.wikipedia.org/wiki/Radioactive_waste.

  • Jadia, C.D. and Fulekar, M.H. (2008). Phytotoxicity and remediation of heavy metals by fibrous root grass in soil-vermicompost media. Journal of Applied Biosciences, 10: 491-499.

    Google Scholar 

  • Jayaraman, A.P. and Prabhakar (1982). The water hyacinth uptake of 137Cs and 90Sr and its decontamination potential as an approach to the zero release concept. In: Proceedings of International Migration in the Environment of Long Lived Radionuclides from the Nuclear Fuel Cycle. Knoxville, TN, July 27-31. IAEA, Vienna.

    Google Scholar 

  • Kim, I.S., Kang, K.H., Green, P.J. and Lee, E.J. (2003). Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ. Pollut., 126: 235-243.

    Article  CAS  Google Scholar 

  • Lane, S.D. and Martin, E.S. (1977). A histochemical investigation of lead uptake in Raphanus sativus. New Phytol., 79: 281-286.

    Article  CAS  Google Scholar 

  • Lasat, M.M., Norvell, W.A. and Kochian, L.V. (1997). Potential for phytoextraction of 137Cs from a contaminate soil. Plant Soil, 195, 99-106.

    Article  CAS  Google Scholar 

  • Liu, D., Jiang, W., Liu, C. and Hou, W. (2000). Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard (Brassica juncea L.). Bioresource Technol, 71: 273-277.

    Google Scholar 

  • Nandakumar, P.B.A., Dushenkov, V., Motto, H. and Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol., 29: 1232-1238.

    Article  Google Scholar 

  • Negri, M.C. and Hinchman, R.R. (2000). The use of plants for the treatment of radionuclides. In: Raskin, I. and Ensley, B.D. (eds.), Phytoremediation of Toxic metals: Using Plants to Clean up the Environment. Wiley, New York, 107-132.

    Google Scholar 

  • Rao, K.R. (2001). Radioactive waste: The problem and its management. Current Science, 81(12): 1534-1546.

    CAS  Google Scholar 

  • Robinson, W.L. and Stone, E.L. (1992). The effect of potassium on the uptake of cesium-137 in food crops grown on coral soils. Coconut at Bikini atoll. Health Physics, 62: 496-511.

    Google Scholar 

  • Salt, D.E., Smith, R.D. and Raskin, I. (1998). Phytoremediation. Ann. Rev. PlantPhys., 49: 643-668.

    CAS  Google Scholar 

  • Shaw, G. and Bell, J.N.B. (1991). Comparative effects of potassium and ammonium on cesium uptake kinetics in wheat. J. Environmental Radioact., 13: 283-296.

    Article  CAS  Google Scholar 

  • Soudek, P., Valenova, S., Vavrikova, Z. and Vanek, T. (2006). 137Cs and 90Sr by sunflower cultivated under hydroponic conditions. Jourl. of Experimental Radioactivity, 88: 236"250.

    Google Scholar 

  • Tanhan, P., Kruatrachue, M., Pokethitiyook, P. and Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromoloina odorata (L.) King & Robinson]. Chemosphere, 68: 323-329.

    Google Scholar 

  • Vazquez, M.D., Barcelo, J., Poschenrieder, C., Hatton, O., Baker, A.J.M. and Cope, G.H. (1992). Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol., 140(3): 350"355.

    Google Scholar 

  • Weber, O., Scholz, R.W., Buhlmann, R. and Grasmuck, D. (2001). Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Analysis, 21: 967-977.

    Article  CAS  Google Scholar 

  • Wendy, A.P., Baxter, I.R., Elizabeth, L.R., John, L.F. and Angus, S.M. (2006). Phytoremediation and hyperaccumulator plants. In: Molecular Biology of Metal Homeostatis and Detoxification: From Microbes to Man. (eds. M.J. Tamas and E. Martinoia), pp. 299-340, Springer.

    Google Scholar 

  • Ximenez-Embun, P., Madrid-Albarran, Y., Camara, C., Cuadrado, C., Burbano, C. and Muzquiz, M. (2001). Evaluation of lupines species to accumulate heavy metals from waste waters. International Journal of Phytoremediation, 3: 369-379.

    Article  CAS  Google Scholar 

  • Zhu, Y.G. and Smolders, E. (2000). Plant uptake of radiocaesium: A review of mechanisms, regulation and application. Jourl. of Exp. Botany, 51: 351, 16351645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Fulekar, M.H., Singh, A. (2010). Phytoremediation of Low Level Nuclear Waste. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_11

Download citation

Publish with us

Policies and ethics