Skip to main content

On Age Structures and Mortality

  • Chapter
  • First Online:
Ageing in Advanced Industrial States

Part of the book series: International Studies in Population ((ISIP,volume 8))

  • 751 Accesses

Comments by Jim Oeppen and Helge Brunborg, and research assistance by Petter Vegard Hansen are gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lotka and Sharpe (1911). See also Lotka’s Analytical theory of biological populations. New York: Plenum Press, 1998 (Plenum Series on Demographic Methods and Population Analysis). This is an English translation of the work that Lotka published in the two-part Théorie Analytique des Associations Biologiques in 1934 and 1939, and represents Lotka’s contributions to the field of demographic analysis.

  2. 2.

    In practice one does not work with the age distribution c(a), but with the cumulative distribution \( C(a) = \int_0^a {c(\alpha )d\alpha.} \) This way one avoids problems caused by irregularities in the empirical age structure due to digit preference, age heaping and shifting. Probably this is an important reason why the regression approach is not widely used.

  3. 3.

    When the reduction of the death rates varies by age, the age distribution of the stable population is changed in such a way that age segments with the strongest mortality reduction get more weight. The typical mortality decline has been strongest below age five. As a result, mortality declines have, throughout human history, tended to make populations younger (Preston et al. 2001, p. 160).

  4. 4.

    Expression (5) can be generalized to include migration, by incorporating an age-specific net migration rate. The net migration rate is the difference of the immigration rate and the emigration rate. Note that the immigration rate is not a rate in the demographic (occurrence-exposure) sense, as the population exposed to the risk of immigration to the country is not included in the immigration rate.

  5. 5.

    This is exactly the reason why the starting age structure of IP is not critical. For example, starting from two very different stable populations (female, North, e 0 = 47.5, r = 0; and female, North, e 0 = 27.5, r = 0.01) for the case of England in the period 1540 to 1871, Lee (1985) finds converging IP-results after a few decades already.

  6. 6.

    Generously provided by Jim Oeppen (2001) (personal communication).

  7. 7.

    There is a printing error in Oeppen’s Table 2.1: growth rates are too low by a factor ten.

References

  • Alders, M., Keilman, N., & Cruijsen, H. (2007). Assumptions for long-term stochastic population forecasts in 18 European countries. European Journal of Population, 23, 33–69.

    Article  Google Scholar 

  • Alderson, M. R., & Ashwood, F. L. (1985). Projection of mortality rates for the elderly. Population Trends, 42, 22–29.

    Google Scholar 

  • Alho, J. M. (1998). A stochastic forecast of the population of Finland. Reviews 1998/4. Helsinki: Statistics Finland.

    Google Scholar 

  • Alho, J., & Spencer, B. (2005). Statistical demography and forecasting. New York: Springer.

    Google Scholar 

  • Alho, J., Alders, M., Cruijsen, H., Keilman, N., Nikander, T., & Pham, D. Q. (2006). New forecast: Population decline postponed in Europe. Statistical Journal of the United Nations ECE, 23, 1–10.

    Google Scholar 

  • Alho, J., Cruijsen, H., & Keilman, N. (2008). Empirically based specification of uncertainty. In J. Alho, S. Hougaard Jensen & J. Lassila (Eds.), Uncertain demographics and fiscal sustainability. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Arthur, W. B., & Vaupel, J. W. (1984). Some general relationships in population dynamics. Population Index, 50(2), 214–226.

    Article  Google Scholar 

  • Bell, W. (1997). Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates. Journal of Official Statistics, 13(3), 279–303.

    Google Scholar 

  • Bennett, N., & Horiuchi, S. (1981). Estimating the completeness of death registration in a closed population. Population Index, 47(2), 207–221.

    Article  Google Scholar 

  • Boleslawski, L., & Tabeau, E. (2001). Comparing theoretical age patterns of mortality beyond the age of 80. In E. Tabeau, A. Tabeau, van den Berg Jeths, C. Heathcote (Eds.), Forecasting mortality in developed countries: Insights from a statistical, demographic, and epidemiological perspective (European studies of population, vol. 9). Dordrecht: Kluwer.

    Google Scholar 

  • Bourgeois-Pichat, J. (1958). Utilisation de la notion de population stable pour mesurer la mortalité et la fécondité des populations des pays sous-développés. Bulletin de l’Institut International de Statistique, 36(2), 94–121.

    Google Scholar 

  • Brunborg, H. (1976). The inverse projection method applied to Norway, 1735–1974. Unpublished manuscript. Oslo: Statistics Norway.

    Google Scholar 

  • Brunborg, H. (1992). Nye og gamle trekk ved dødelighetsutviklingen i Norge. In O. Ljones, B. Moen & L. Østby (Eds.), Mennesker og modeller: Livsløp og kryssløp. Oslo: Statistics Norway.

    Google Scholar 

  • Büttner, T. (1999). Approaches and experiences in projecting mortality patterns for the oldest old in low mortality countries. Working Paper 31, Joint ECE-Eurostat Work Session on Demographic Projections, Perugia, Italy, 3–7 May, 1999, from www.unece.org/stats/documents/1999.05.projections.htm

  • Carter, L., & Lee, R. (1992). Modeling and forecasting US sex differentials in mortality. International Journal of Forecasting, 8(3), 393–411.

    Article  Google Scholar 

  • Chiang, C. L. (1991). Competing risks in mortality analysis. Annual Review of Public Health, 12, 281–307.

    Article  Google Scholar 

  • Coale, A. (1957). A new method for calculating Lotka’s r: The intrinsic rate of growth in a stable population. Population Studies, 11(1), 92–94.

    Google Scholar 

  • Coale, A. (1972). The growth and structure of human populations. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Coale, A. (1987). Stable population. In The new palgrave: A dictionary of economics, vol. 4. London: MacMillan.

    Google Scholar 

  • Coale, A., & Demeny, P. with Vaughan, B. (1983). Regional model life tables and stable populations. New York: Academic.

    Google Scholar 

  • De Beer, J., & Alders, M. (1999). Probabilistic population and household forecasts for the Netherlands. Working Paper 45, Joint ECE-Eurostat Work Session on Demographic Projections, Perugia, Italy, 3–7 May 1999. Internet www.unece.org/stats/documents/1999.05.projections.htm

  • Danmarks, S. (2000). Befokningens bevægelser 1999. Copenhagen: Danmarks Statistik.

    Google Scholar 

  • Drake, M. (1969). Population and society in Norway 1735–1865. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hannerz, H. (2001). Manhood trials and the law of mortality. Demographic Research, 4, article 7.

    Google Scholar 

  • Hartmann, M. (1987). Past and recent attempts to model mortality at all ages. Journal of Official Statistics, 3, 19–36.

    Google Scholar 

  • Johansen, H. C., & Oeppen, J. (2001). Danish population estimates 1665–1840. Research Report 21. Odense: Danish Center for Demographic Research.

    Google Scholar 

  • Joung, I. (1996). Marital status and health. Descriptive and explanatory studies. Ph.D. dissertation. Rotterdam: Erasmus University.

    Google Scholar 

  • Keilman, N. (1990). Uncertainty in national population forecasting: Issues, backgrounds, analyses, recommendations. Amsterdam/Rockland, MA: Swets & Zeitlinger.

    Google Scholar 

  • Keilman, N. (1997). Ex-post errors in official population forecasts in industrialized countries. Journal of Official Statistics, 13(3), 245–277.

    Google Scholar 

  • Keilman, N. (2001). Data quality and accuracy of United Nations population projections, 1950–1995. Population Studies, 55(2), 149–164.

    Article  Google Scholar 

  • Keilman, N., Pham, D. Q., & Hetland, A. (2001). Norway’s uncertain demographic futureSocial and Economic Studies 105. Oslo: Statistics Norway.

    Google Scholar 

  • Keyfitz, N. (1985). Applied mathematical demography (2nd ed.). New York: Springer Verlag.

    Book  Google Scholar 

  • Keyfitz, N., & Flieger, W. (1969). World population growth and aging: Demographic trends in the late twentieth century. Chicago: Chicago University Press.

    Google Scholar 

  • Keyfitz, N., Nagnur, D., & Sharma, D. (1967). On the interpretation of age distributions. Journal of the American Statistical Association, 62, 862–874.

    Article  Google Scholar 

  • Kostaki, A. (1992a). Methodology and applications of the Heligman-Pollard formula. Lund: Department of Statistics, University of Lund.

    Google Scholar 

  • Kostaki, A. (1992b). A nine-parameter version of the Heligman-Pollard formula. Mathematical Population Studies, 3, 277–288.

    Article  Google Scholar 

  • Kranczer, S. (1997). Record high U.S. life expectancy. Statistical Bulletin, 78(4), 2–8.

    Google Scholar 

  • Lee, R. (1974). Estimating series of vital rates and age structures from baptisms and burials: A new technique, with applications to pre-industrial England. Population Studies, 28(3), 495–512.

    Google Scholar 

  • Lee, R. (1985). Inverse projection and back projection: A critical appraisal, and comparative results for England, 1539 to 1871. Population Studies, 39, 233–248.

    Article  Google Scholar 

  • Lee, R., & Carter, L. (1992). Modeling and forecasting the times series of U.S. mortality. Journal of the American Statistical Association, 87(419), 659–671.

    Google Scholar 

  • Lee, R., & Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond high, medium, and low. Journal of the American Statistical Association, 89(428), 1175–1189.

    Article  Google Scholar 

  • Lotka, A., & Sharpe, F. (1911). A problem in age-distribution. Philosophical Magazine, 12(124), 435–438.

    Google Scholar 

  • Lutz, W., & Scherbov, S. (1998). An expert-based framework for probabilistic national population projections: The example of Austria. European Journal of Population, 14(1), 1–17.

    Article  Google Scholar 

  • Mamelund, S. E., & Borgan, J. K. (1996). Kohort-og periodedødelighet i Norge 1846–1994. (“Cohort and period mortality in Norway 1846–1994”) Reports 96/9. Oslo: Statistics Norway.

    Google Scholar 

  • Manton, K., Stallard, E., & Singer, B. (1992). Projecting the future size and health status of the US elderly population. International Journal of Forecasting, 8(3), 433–458.

    Article  Google Scholar 

  • McCaa, R. (1989). Populate: A microcomputer projection package for aggregative data applied to Norway, 1736–1970. Annales de Démographie Historique, 287–298.

    Google Scholar 

  • McCaa, R. (1993). Benchmarks for a new Inverse Population Projection program: England, Sweden, and a standard demographic transition. In D. Reher & R. Schofield (Eds.), Old and new methods in historical demography. Oxford: Oxford University Press.

    Google Scholar 

  • McKendrick, A. G. (1926). Applications of mathematics to medical problems. Proceedings of Edinburgh Mathematical Society, 44, 98–130.

    Article  Google Scholar 

  • McNown, R., & Rogers, A. (1989). Time-series analysis forecasts of a parameterised mortality schedule. In P. Congdon & P. Batey (Eds.), Advances in regional demography: Information, forecasts, models. London: Belhaven.

    Google Scholar 

  • Murray, C., & Lopez, A. (1997). Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study. Lancet, 349, 1436–1442.

    Article  Google Scholar 

  • Nusselder, W. J., & Mackenbach, J. P. (2000). Lack of improvement of life expectancy at advanced ages in the Netherlands. International Journal of Epidemiology, 29, 140–148.

    Article  Google Scholar 

  • Oeppen, J. (1993a). Back projection and inverse projection: Members of a wider class of constrained projection models. Population Studies, 47(2), 245–267.

    Article  Google Scholar 

  • Oeppen, J. (1993b). Generalized inverse projection. In D. Reher & R. Schofield (Eds.), Old and new methods in historical demography. Oxford: Oxford University Press.

    Google Scholar 

  • Olshansky, S. J., & Carnes, B. A. (1996). Prospect for extended survival: A critical review of the biological evidence. In G. Caselli & A. D. Lopez (Eds.), Health and mortality among elderly populations. Oxford: Clarendon.

    Google Scholar 

  • Olshansky, S. J., Carnes, B. A., & Cassell, C. (1990). In search of Methuselah: Estimating the upper limits to human longevity. Science, 250(4981), 634–640.

    Article  Google Scholar 

  • Palmer, E. (2003–2007). Social insurance studies, volumes 1–5. Stockholm: Swedish National Social Insurance Board, from Table 3.6

  • Preston, S. H. (1974). An evaluation of postwar mortality projections in Australia, Canada, Japan, New Zealand and the United States. WHO Statistical Report, 27, 719–745.

    Google Scholar 

  • Preston, S. H., & Coale, A. (1982). Age structure, growth, attrition, and accession: A new synthesis. Population Index, 48(2), 217–259.

    Article  Google Scholar 

  • Preston, S. H., Heuveline, P., & Guillot, M. (2001). Demography: Measuring and modeling population processes. Oxford: Blackwell.

    Google Scholar 

  • Robine, J. M. (2001). Redéfinir les phases de la transition épidémiologique à travers l’étude de la dispersion des durées de vie: le cas de France. Population, 56(1–2), 199–222.

    Article  Google Scholar 

  • Rogers, A., & Gard, K. (1991). Applications of the Heligman/Pollard model mortality schedule. Population Bulletin of the United Nations, 30, 79–105.

    Google Scholar 

  • Statistics Norway. (1994). Historisk statistikk. Oslo: Statistics Norway.

    Google Scholar 

  • Tabeau, E. (2001). A review of demographic forecasting models for mortality. In E. Tabeau, A. Tabeau, van den Berg Jeths, C. Heathcote (Eds.), Forecasting mortality in developed countries: Insights from a statistical, demographic, and epidemiological perspective (European studies of population, vol. 9). Dordrecht: Kluwer.

    Google Scholar 

  • Tabeau, E., Ekamper, P., Huisman, C., & Bosch, A. (2001). Predicting mortality from period, cohort, or cause-specific trends: A study of four European countries. In E. Tabeau, A. van den Berg Jeths, C. Heathcote (Eds.), Forecasting mortality in developed countries: Insights from a statistical, demographic, and epidemiological perspective (European studies of population, vol. 9). Dordrecht: Kluwer.

    Google Scholar 

  • Tuljapurkar, S. (2008). The UPE forecasts: Strengths, innovations, developments. In S. Alho, H. Jensen & J. Lassila (Eds.), Uncertain demographics and fiscal sustainability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tuljapurkar, S., Li, N., & Boe, C. (2000). A universal pattern of mortality decline in the G7 countries. Nature, 405, 789–792, from http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v405/n6788/full/405789a0_fs.html

  • Vaupel, J. W. (1997). The remarkable improvements in survival at older ages. Philosophical Transactions of the Royal Society of London, Series B, 352(1363), 1799–1804.

    Article  Google Scholar 

  • Van den Berg Jeths, A., Hoogenveen, R., de Hollander, G., & Tabeau, E. (2001). A review of epidemiological approaches to forecasting mortality and morbidity. In E. Tabeau, A. van den Berg Jeths, C. Heathcote (Eds.), Forecasting mortality in developed countries: Insights from a statistical, demographic, and epidemiological perspective (European studies of population, vol. 9). Dordrecht: Kluwer.

    Google Scholar 

  • Van Hoorn, W., & de Beer, J. (2001). Bevolkingsprognose 2000–2050: Prognosemodel voor de sterfte (Population forecast 2000–2050: The mortality forecast model). Maandstatistiek van de Bevolking, 49(7), 10–15.

    Google Scholar 

  • Van Leeuwen, M., & Oeppen, J. (1993). Reconstructing the demographic regime of Amsterdam 1681–1920. Economic and Social History in the Netherlands, 5, 61–102.

    Google Scholar 

  • Von Foerster, H. (1959). Some remarks on changing populations. In F. Stohlman Jr. (Ed.), The kinetics of cellular proliferation. New York: Grune & Stratton.

    Google Scholar 

  • Wilmoth, J. (1995). Are mortality projections always more pessimistic when disaggregated by cause of death? Mathematical Population Studies, 5(3), 293–319.

    Article  Google Scholar 

  • Wilmoth, J., & Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography, 36(4), 475–495.

    Article  Google Scholar 

  • Wrigley, E. A., & Schofield, R. (1982). The population history of England, 1541–1871. Cambridge: Edward Arnold and Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Keilman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Keilman, N. (2010). On Age Structures and Mortality. In: Tuljapurkar, S., Ogawa, N., Gauthier, A. (eds) Ageing in Advanced Industrial States. International Studies in Population, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3553-0_2

Download citation

Publish with us

Policies and ethics