Skip to main content

Core and Linker Histone Modifications Involved in the DNA Damage Response

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

The stability of the genome is constantly under attack from both endogenous and exogenous DNA damaging agents. These agents, as well as naturally occurring processes such as DNA replication and recombination can result in DNA double-strand breaks (DSBs). DSBs are potentially lethal and so eukaryotic cells have evolved an elaborate pathway, the DNA damage response, which detects the damage, recruits proteins to the DSBs, activates checkpoints to stall cell cycle progression and ultimately mediates repair of the damaged DNA. As the DSBs occur in the context of chromatin, execution of this response is partly orchestrated through the modification of the DNA-bound histone proteins. These histone modifications include the addition or removal of various chemical groups or small peptides and function to change the chromatin structure or to attract factors involved in the DNA damage response, and as such, are particularly important in the early stages of the DNA damage response. This review will focus on such modifications, the enzymes responsible and also highlights their importance by reporting known roles for these modifications in genome stability and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

53BP1:

p53 binding protein 1

ABRA1:

Abraxas-BRCA1-A complex subunit

ac:

acetylated

ADP:

adenosine di-phosphate

AF4:

ALL1 fused gene from chromosome 4

ASF1A:

anti-silencing function 1A

ATM:

ataxia telangiectasia mutated

ATR:

ATM and Rad3-related

BRCA1:

breast cancer 1 early onset

BRCT:

BRCA1 c-terminal

CAF-1:

chromatin assembly factor 1

CBP/p300:

CREB binding protein/Histone acetyltransferase p300

ChIP:

chromatin immunoprecipitation

Chk1:

checkpoint kinase 1

Chk2:

checkpoint kinase 2

Crb2:

crumbs homologue 2 (Rad9 homologue)

DDR:

DNA damage response

DNA:

deoxy-ribonucleic acid

DNA-PK:

DNA dependent protein kinase

DSB:

double strand break

DUB:

deubiquitinase

E:

Glutamic acid

ES:

embryonic stem

EYA:

eyes absent homologue

FHA:

forkhead associated

FRAP:

fluorescence recovery after photobleaching

grp :

grapes (Drosophila Chk1)

H1:

Histone 1

H2A:

Histone 2A

H2B:

Histone 2B

H2AX:

Histone 2A.X

H3:

Histone 3

H4:

Histone 4

H2Av:

Histone 2Av

HDAC:

histone deacetylase

hMOF:

human MOF (a.k.a. KAT8)

HP1:

heterochromatin protein 1

HP1-β:

heterochromatin protein 1 beta

HR:

homologous recombination

IR:

ionizing radiation

JNK1:

Jun N-terminal kinase

K:

Lysine

KAT:

lysine acetyltransferase

KDM:

lysine demethylase

KMT:

lysine methyltransferase

LOH:

loss of heterozygosity

lok :

long form of nuclear kinase (Drosophila Chk2)

MDC1:

mediator of DNA checkpoint 1

me:

methylated

MEF:

mouse embryonic fibroblast

MIU:

motif interacting with ubiquitin

MOF:

males absent on the first

MRN:

Mre11-Rad50-Nbs1

NBS1:

Nijmegen breakage syndrome 1

NHEJ:

non-homologous end joining

ph:

phosphorylated

PIKK:

phosphatidylinositol-3 kinase related kinase

PRMT:

protein arginine methyltransferase

Q:

Glutamine

R:

Arginine

Rad51:

radiation (sensitive) 51

RAP80:

receptor associated protein 80

RNAi:

RNA interference

RNF168:

ring finger protein 168

RNF8:

ring finger protein 8

ROS:

reactive oxygen species

S:

Serine

SIRT1:

silent mating type information regulation homologue 1

SIRT2:

silent mating type information regulation homologue 2

SNF2H:

sucrose non-fermenting protein 2 homologue

Su(var)3-9:

suppressor of variegation 3-9

SUMO:

small ubiquitin-like modifier

SUV39H:

suppressor of variegation 3-9 homologue (human)

T:

Threonine

Tip60:

HIV Tat-interacting protein 60 kDa (a.k.a. KAT5)

Trrap:

transformation/transcription domain-associated protein

ub:

ubiquitin

UBC13:

ubiquitin conjugating enzyme E2 13

UIM:

ubiquitin interaction motif

WICH:

WSTF-ISWI chromatin remodelling

WSTF:

William’s syndrome transcription factor

Y:

Tyrosine

References

  • Anderson, L., Henderson, C., and Adachi, Y. (2001) Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol, 21, 1719–1729.

    CAS  PubMed  Google Scholar 

  • Andreotti, A. H. (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry, 42, 9515–9524.

    CAS  PubMed  Google Scholar 

  • Ataian, Y. and Krebs, J. E. (2006) Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol, 84, 490–504.

    CAS  PubMed  Google Scholar 

  • Ayoub, N., Jeyasekharan, A. D., Bernal, J. A., and Venkitaraman, A. R. (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature, 453, 682–686.

    CAS  PubMed  Google Scholar 

  • Botuyan, M. V., Lee, J., Ward, I. M., Kim, J. E., Thompson, J. R., Chen, J., and Mer, G. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 127, 1361–1373.

    CAS  PubMed  Google Scholar 

  • Botuyan, M. V., Nomine, Y., Yu, X., Juranic, N., Macura, S., Chen, J., and Mer, G. (2004) Structural basis of BACH1 phosphopeptide recognition by BRCA1 tandem BRCT domains. Structure, 12, 1137–1146.

    CAS  PubMed  Google Scholar 

  • Bradbury, E. M. (1992) Reversible histone modifications and the chromosome cell cycle. Bioessays, 14, 9–16.

    CAS  PubMed  Google Scholar 

  • Bryan, E. J., Jokubaitis, V. J., Chamberlain, N. L., Baxter, S. W., Dawson, E., Choong, D. Y., and Campbell, I. G. (2002) Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer, 102, 137–141.

    CAS  PubMed  Google Scholar 

  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A., and Chen, D. J. (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276, 42462–42467.

    CAS  PubMed  Google Scholar 

  • Celeste, A., Petersen, S., Romanienko, P. J., Fernandez-Capetillo, O., Chen, H. T., Sedelnikova, O. A., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M. J., Redon, C., Pilch, D. R., Olaru, A., Eckhaus, M., Camerini-Otero, R. D., Tessarollo, L., Livak, F., Manova, K., Bonner, W. M., Nussenzweig, M. C., and Nussenzweig, A. (2002) Genomic instability in mice lacking histone H2AX. Science, 296, 922–927.

    CAS  PubMed  Google Scholar 

  • Chanoux, R. A., Yin, B., Urtishak, K. A., Asare, A., Bassing, C. H., and Brown, E. J. (2009) ATR and H2AX cooperate in maintaining genome stability under replication stress. J Biol Chem, 284, 5994–6003.

    CAS  PubMed  Google Scholar 

  • Chapman, J. R. and Jackson, S. P. (2008) Phospho–dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep, 9, 795–801.

    CAS  PubMed  Google Scholar 

  • Chen, C. C., Carson, J. J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J. K. (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134, 231–243.

    CAS  PubMed  Google Scholar 

  • Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., and Rosenfeld, M. G. (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature, 458, 591–596.

    CAS  PubMed  Google Scholar 

  • Costelloe, T., Fitzgerald, J., Murphy, N. J., Flaus, A., and Lowndes, N. F. (2006) Chromatin modulation and the DNA damage response. Exp Cell Res, 312, 2677–2686.

    CAS  PubMed  Google Scholar 

  • Czermin, B., Schotta, G., Hulsmann, B. B., Brehm, A., Becker, P. B., Reuter, G., and Imhof, A. (2001) Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep, 2, 915–919.

    CAS  PubMed  Google Scholar 

  • Daniel, J. A., Pray-Grant, M. G., and Grant, P. A. (2005) Effector proteins for methylated histones: an expanding family. Cell Cycle, 4, 919–926.

    CAS  PubMed  Google Scholar 

  • Das, C., Lucia, M. S., Hansen, K. C., and Tyler, J. K. (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459, 113–117.

    CAS  PubMed  Google Scholar 

  • Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D. H., Pepperkok, R., Ellenberg, J., Panier, S., Durocher, D., Bartek, J., Lukas, J., and Lukas, C. (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell, 136, 435–446.

    CAS  PubMed  Google Scholar 

  • Dou, Y., Bowen, J., Liu, Y., and Gorovsky, M. A. (2002) Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J Cell Biol, 158, 1161–1170.

    CAS  PubMed  Google Scholar 

  • Dou, Y. and Gorovsky, M. A. (2000) Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Mol Cell, 6, 225–231.

    CAS  PubMed  Google Scholar 

  • Downs, J. A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S. J., Jackson, S. P., and Cote, J. (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell, 16, 979–990.

    CAS  PubMed  Google Scholar 

  • Falk, M., Lukasova, E., and Kozubek, S. (2008) Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta, 1783, 2398–2414.

    CAS  PubMed  Google Scholar 

  • Fan, Y., Nikitina, T., Zhao, J., Fleury, T. J., Bhattacharyya, R., Bouhassira, E. E., Stein, A., Woodcock, C. L., and Skoultchi, A. I. (2005) Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell, 123, 1199–1212.

    CAS  PubMed  Google Scholar 

  • Faraone-Mennella, M. R. (2005) Chromatin architecture and functions: the role(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of nuclear proteins. Biochem Cell Biol, 83, 396–404.

    CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo, O., Chen, H. T., Celeste, A., Ward, I., Romanienko, P. J., Morales, J. C., Naka, K., Xia, Z., Camerini-Otero, R. D., Motoyama, N., Carpenter, P. B., Bonner, W. M., Chen, J., and Nussenzweig, A. (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 4, 993–997.

    CAS  PubMed  Google Scholar 

  • Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N. G., Perez-Rosado, A., Calvo, E., Lopez, J. A., Cano, A., Calasanz, M. J., Colomer, D., Piris, M. A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet, 37, 391–400.

    CAS  PubMed  Google Scholar 

  • Garcia, B. A., Busby, S. A., Barber, C. M., Shabanowitz, J., Allis, C. D., and Hunt, D. F. (2004) Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J Proteome Res, 3, 1219–1227.

    CAS  PubMed  Google Scholar 

  • Gayther, S. A., Batley, S. J., Linger, L., Bannister, A., Thorpe, K., Chin, S. F., Daigo, Y., Russell, P., Wilson, A., Sowter, H. M., Delhanty, J. D., Ponder, B. A., Kouzarides, T., and Caldas, C. (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet, 24, 300–303.

    CAS  PubMed  Google Scholar 

  • Goldknopf, I. L., Taylor, C. W., Baum, R. M., Yeoman, L. C., Olson, M. O., Prestayko, A. W., and Busch, H. (1975) Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem, 250, 7182–7187.

    CAS  PubMed  Google Scholar 

  • Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature, 389, 349–352.

    CAS  PubMed  Google Scholar 

  • Guenther, M. G., Lawton, L. N., Rozovskaia, T., Frampton, G. M., Levine, S. S., Volkert, T. L., Croce, C. M., Nakamura, T., Canaani, E., and Young, R. A. (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev, 22, 3403–3408.

    CAS  PubMed  Google Scholar 

  • Gupta, A., Guerin - Peyrou, T. G., Sharma, G. G., Park, C., Agarwal, M., Ganju, R. K., Pandita, S., Choi, K., Sukumar S., Pandita, R. K., Ludwig, T., Pandita T. K. (2008). The mammalian orthology of Drosophita MOF that acetylates histone H4 lysine 16 is essential for embroyogenesis and oncogenesis. Mol Cell Biol. 28(1): 379–409.

    Google Scholar 

  • Gupta, A., Sharma, G. G., Young, C. S., Agarwal, M., Smith, E. R., Paull, T. T., Lucchesi, J. C., Khanna, K. K., Ludwig, T., and Pandita, T. K. (2005) Involvement of human MOF in ATM function. Mol Cell Biol, 25, 5292–5305.

    CAS  PubMed  Google Scholar 

  • Happel, N. and Doenecke, D. (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene, 431, 1–12.

    CAS  PubMed  Google Scholar 

  • Hassa, P. O. and Hottiger, M. O. (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci, 13, 3046–3082.

    CAS  PubMed  Google Scholar 

  • Helleday, T., Lo, J., van Gent, D. C., and Engelward, B. P. (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst), 6, 923–935.

    CAS  Google Scholar 

  • Huen, M. S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M. B., and Chen, J. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131, 901–914.

    CAS  PubMed  Google Scholar 

  • Huyen, Y., Zgheib, O., Ditullio, R. A., Jr., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature, 432, 406–411.

    CAS  PubMed  Google Scholar 

  • Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. (2000) Involvement of the Tip60 histone acetylase complex in DNA repair and apoptosis. Cell, 102, 463–473.

    CAS  PubMed  Google Scholar 

  • Ikura, T., Tashiro, S., Kakino, A., Shima, H., Jacob, N., Amunugama, R., Yoder, K., Izumi, S., Kuraoka, I., Tanaka, K., Kimura, H., Ikura, M., Nishikubo, S., Ito, T., Muto, A., Miyagawa, K., Takeda, S., Fishel, R., Igarashi, K., and Kamiya, K. (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol, 27, 7028–7040.

    CAS  PubMed  Google Scholar 

  • Jazayeri, A., McAinsh, A. D., and Jackson, S. P. (2004) Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A, 101, 1644–1649.

    CAS  PubMed  Google Scholar 

  • Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science, 293, 1074–1080.

    CAS  PubMed  Google Scholar 

  • Johnson, C. A. and Turner, B. M. (1999) Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol, 10, 179–188.

    CAS  PubMed  Google Scholar 

  • Kim, H., Chen, J., and Yu, X. (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science, 316, 1202–1205.

    CAS  PubMed  Google Scholar 

  • Kolas, N. K., Chapman, J. R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F. D., Panier, S., Mendez, M., Wildenhain, J., Thomson, T. M., Pelletier, L., Jackson, S. P., and Durocher, D. (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318, 1637–1640.

    CAS  PubMed  Google Scholar 

  • Konishi, A., Shimizu, S., Hirota, J., Takao, T., Fan, Y., Matsuoka, Y., Zhang, L., Yoneda, Y., Fujii, Y., Skoultchi, A. I., and Tsujimoto, Y. (2003) Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell, 114, 673–688.

    CAS  PubMed  Google Scholar 

  • Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693–705.

    CAS  PubMed  Google Scholar 

  • Krishnan, N., Jeong, D. G., Jung, S. K., Ryu, S. E., Xiao, A., Allis, C. D., Kim, S. J., and Tonks, N. K. (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem, 284, 16066–16070.

    CAS  PubMed  Google Scholar 

  • Krivtsov, A. V., Feng, Z., Lemieux, M. E., Faber, J., Vempati, S., Sinha, A. U., Xia, X., Jesneck, J., Bracken, A. P., Silverman, L. B., Kutok, J. L., Kung, A. L., and Armstrong, S. A. (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell, 14, 355–368.

    CAS  PubMed  Google Scholar 

  • Kusch, T., Florens, L., MacDonald, W. H., Swanson, S. K., Glaser, R. L., Yates, J. R., 3rd, Abmayr, S. M., Washburn, M. P., and Workman, J. L. (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science, 306, 2084–2087.

    CAS  PubMed  Google Scholar 

  • Lavau, C., Du, C., Thirman, M., and Zeleznik-Le, N. (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J, 19, 4655–4664.

    CAS  PubMed  Google Scholar 

  • Lee, J. H. and Paull, T. T. (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308, 551–554.

    CAS  PubMed  Google Scholar 

  • Lennartsson, A. and Ekwall, K. (2009) Histone modification patterns and epigenetic codes. Biochim Biophys Acta, 1790(9), 863–868.

    CAS  PubMed  Google Scholar 

  • Li, G., Levitus, M., Bustamante, C., and Widom, J. (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol, 12, 46–53.

    CAS  PubMed  Google Scholar 

  • Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell, 134, 244–255.

    CAS  PubMed  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–260.

    CAS  PubMed  Google Scholar 

  • Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., and Lukas, J. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131, 887–900.

    CAS  PubMed  Google Scholar 

  • Manke, I. A., Lowery, D. M., Nguyen, A., and Yaffe, M. B. (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science, 302, 636–639.

    CAS  PubMed  Google Scholar 

  • Motoyama, N. and Naka, K. (2004) DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev, 14, 11–16.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D. and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci, 32, 286–295.

    CAS  PubMed  Google Scholar 

  • Munks, R. J., Moore, J., O’Neill, L. P., and Turner, B. M. (1991) Histone H4 acetylation in Drosophila. Frequency of acetylation at different sites defined by immunolabelling with site-specific antibodies. FEBS Lett, 284, 245–248.

    CAS  PubMed  Google Scholar 

  • Murga, M., Jaco, I., Fan, Y., Soria, R., Martinez-Pastor, B., Cuadrado, M., Yang, S. M., Blasco, M. A., Skoultchi, A. I., and Fernandez-Capetillo, O. (2007) Global chromatin compaction limits the strength of the DNA damage response. J Cell Biol, 178, 1101–1108.

    CAS  PubMed  Google Scholar 

  • Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q., and Herceg, Z. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol, 8, 91–99.

    CAS  PubMed  Google Scholar 

  • Niida, H. and Nakanishi, M. (2006) DNA damage checkpoints in mammals. Mutagenesis, 21, 3–9.

    CAS  PubMed  Google Scholar 

  • Pandita, T. K. and Richardson, C. (2009) Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res, 37, 1363–1377.

    CAS  PubMed  Google Scholar 

  • Panier, S. and Durocher, D. (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst), 8, 436–443.

    CAS  Google Scholar 

  • Park, Y. S., Jin, M. Y., Kim, Y. J., Yook, J. H., Kim, B. S., and Jang, S. J. (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol, 15, 1968–1976.

    PubMed  Google Scholar 

  • Paull, T. T. and Lee, J. H. (2005) The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle, 4, 737–740.

    CAS  PubMed  Google Scholar 

  • Peng, J. C. and Karpen, G. H. (2009) Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet, 5, e1000435.

    PubMed  Google Scholar 

  • Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C., Masuno, M., Tommerup, N., van Ommen, G. J., Goodman, R. H., Peters, D. J. et al. (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376, 348–351.

    CAS  PubMed  Google Scholar 

  • Pfister, S., Rea, S., Taipale, M., Mendrzyk, F., Straub, B., Ittrich, C., Thuerigen, O., Sinn, H. P., Akhtar, A., and Lichter, P. (2008) The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer, 122, 1207–1213.

    CAS  PubMed  Google Scholar 

  • Povirk, L. F. (2006) Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst), 5, 1199–1212.

    CAS  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D., and Jenuwein, T. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593–599.

    CAS  PubMed  Google Scholar 

  • Rodriguez, M. C. and Songyang, Z. (2008) BRCT domains: phosphopeptide binding and signaling modules. Front Biosci, 13, 5905–5915.

    CAS  PubMed  Google Scholar 

  • Roelfsema, J. H. and Peters, D. J. (2007) Rubinstein-Taybi syndrome: clinical and molecular Overview. Expert Rev Mol Med, 9, 1–16.

    PubMed  Google Scholar 

  • Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 273, 5858–5868.

    CAS  PubMed  Google Scholar 

  • Roque, A., Ponte, I., Arrondo, J. L., and Suau, P. (2008) Phosphorylation of the carBoxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Res, 36, 4719–4726.

    CAS  PubMed  Google Scholar 

  • Rowley, J. D., Reshmi, S., Sobulo, O., Musvee, T., Anastasi, J., Raimondi, S., Schneider, N. R., Barredo, J. C., Cantu, E. S., Schlegelberger, B., Behm, F., Doggett, N. A., Borrow, J., and Zeleznik-Le, N. (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood, 90, 535–541.

    CAS  PubMed  Google Scholar 

  • Rubinstein, J. H. and Taybi, H. (1963) Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. Am J Dis Child, 105, 588–608.

    CAS  PubMed  Google Scholar 

  • Sancho, M., Diani, E., Beato, M., and Jordan, A. (2008) Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet, 4, e1000227.

    PubMed  Google Scholar 

  • Sanders, S. L., Portoso, M., Mata, J., Bahler, J., Allshire, R. C., and Kouzarides, T. (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell, 119, 603–614.

    CAS  PubMed  Google Scholar 

  • Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev, 18, 1251–1262.

    CAS  PubMed  Google Scholar 

  • Schultz, L. B., Chehab, N. H., Malikzay, A., and Halazonetis, T. D. (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol, 151, 1381–1390.

    CAS  PubMed  Google Scholar 

  • Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem, 75, 243–269.

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., and Peterson, C. L. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311, 844–847.

    CAS  PubMed  Google Scholar 

  • Slany, R. K. (2005) When epigenetics kills: MLL fusion proteins in leukemia. Hematol Oncol, 23, 1–9.

    CAS  PubMed  Google Scholar 

  • Smith, B. C. and Denu, J. M. (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta, 1789, 45–57.

    CAS  PubMed  Google Scholar 

  • Sobulo, O. M., Borrow, J., Tomek, R., Reshmi, S., Harden, A., Schlegelberger, B., Housman, D., Doggett, N. A., Rowley, J. D., and Zeleznik-Le, N. J. (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci U S A, 94, 8732–8737.

    CAS  PubMed  Google Scholar 

  • Srivastava, N., Gochhait, S., de Boer, P., and Bamezai, R. N. (2009) Role of H2AX in DNA damage response and human cancers. Mutat Res, 681, 180–188.

    CAS  PubMed  Google Scholar 

  • Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature, 403, 41–45.

    CAS  PubMed  Google Scholar 

  • Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.

    CAS  PubMed  Google Scholar 

  • Taipale, M., Rea, S., Richter, K., Vilar, A., Lichter, P., Imhof, A., and Akhtar, A. (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol, 25, 6798–6810.

    CAS  PubMed  Google Scholar 

  • Thompson, P. R. and Fast, W. (2006) Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock?. ACS Chem Biol, 1, 433–441.

    CAS  PubMed  Google Scholar 

  • Travers, A. (1999) The location of the linker histone on the nucleosome. Trends Biochem Sci, 24, 4–7.

    CAS  PubMed  Google Scholar 

  • Tsukuda, T., Fleming, A. B., Nickoloff, J. A., and Osley, M. A. (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature, 438, 379–383.

    CAS  PubMed  Google Scholar 

  • Turner, B. M. (1993) Decoding the nucleosome. Cell, 75, 5–8.

    CAS  PubMed  Google Scholar 

  • Turner, B. M. (2000) Histone acetylation and an epigenetic code. Bioessays, 22, 836–845.

    CAS  PubMed  Google Scholar 

  • Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur J Biochem, 179, 131–139.

    CAS  PubMed  Google Scholar 

  • van Attikum, H., Fritsch, O., and Gasser, S. M. (2007) Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J, 26, 4113–4125.

    PubMed  Google Scholar 

  • van Attikum, H. and Gasser, S. M. (2005) The histone code at DNA breaks: a guide to repair?. Nat Rev Mol Cell Biol, 6, 757–765.

    PubMed  Google Scholar 

  • van Attikum, H. and Gasser, S. M. (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol, 19, 207–217.

    Google Scholar 

  • van Gent, D. C., Hoeijmakers, J. H., and Kanaar, R. (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet, 2, 196–206.

    PubMed  Google Scholar 

  • Vissers, J. H., Nicassio, F., van Lohuizen, M., Di Fiore, P. P., and Citterio, E. (2008) The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div, 3, 8.

    PubMed  Google Scholar 

  • Ward, I. M. and Chen, J. (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 276, 47759–47762.

    CAS  PubMed  Google Scholar 

  • Ward, I. M., Minn, K., Jorda, K. G., and Chen, J. (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem, 278, 19579–19582.

    CAS  PubMed  Google Scholar 

  • Wilson, K. A. and Stern, D. F. (2008) NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell Cycle, 7, 3584–3594.

    CAS  PubMed  Google Scholar 

  • Wisniewski, J. R., Zougman, A., Kruger, S., and Mann, M. (2007) Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics, 6, 72–87.

    CAS  PubMed  Google Scholar 

  • Wood, J. L., Singh, N., Mer, G., and Chen, J. (2007) MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J Biol Chem, 282, 35416–35423.

    CAS  PubMed  Google Scholar 

  • Woodcock, C. L., Skoultchi, A. I., and Fan, Y. (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res, 14, 17–25.

    CAS  PubMed  Google Scholar 

  • Xiao, A., Li, H., Shechter, D., Ahn, S. H., Fabrizio, L. A., Erdjument-Bromage, H., Ishibe-Murakami, S., Wang, B., Tempst, P., Hofmann, K., Patel, D. J., Elledge, S. J., and Allis, C. D. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature, 457, 57–62.

    CAS  PubMed  Google Scholar 

  • Zhao, G. Y., Sonoda, E., Barber, L. J., Oka, H., Murakawa, Y., Yamada, K., Ikura, T., Wang, X., Kobayashi, M., Yamamoto, K., Boulton, S. J., and Takeda, S. (2007) A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell, 25, 663–675.

    CAS  PubMed  Google Scholar 

  • Zhu, P., Zhou, W., Wang, J., Puc, J., Ohgi, K. A., Erdjument-Bromage, H., Tempst, P., Glass, C. K., and Rosenfeld, M. G. (2007) A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell, 27, 609–621.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ciaran Morrison and members of the lab for critical reading of the manuscript. Work in the Rea laboratory is supported by a Science Foundation Ireland President of Ireland Young Researcher Award (SFI-PIYRA), 07/Y14/I1052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Rea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chubb, J.E., Rea, S. (2010). Core and Linker Histone Modifications Involved in the DNA Damage Response. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_2

Download citation

Publish with us

Policies and ethics