Skip to main content

Centromeres: Assembling and Propagating Epigenetic Function

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

The faithful replication of DNA and the accurate segregation of genomic material from one generation to the next is critical in the maintenance of genomic stability. This chapter will describe the structure and assembly of an epigenetically inherited locus, the centromere, and its role in the processes by which sister chromatids are evenly segregated to daughter cells. During the G2 phase of the cell cycle kinetochores are assembled upon the chromatids. During mitosis, kinetochores attach chromosome(s) to the mitotic spindle. The kinetochore structure serves as the interface between the mitotic spindle and the chromatids and it is at the kinetochore where the forces that drive chromatid separation are generated. Unattached chromosomes fail to satisfy the spindle assembly checkpoint (SAC), resulting in cell cycle arrest. The centromere is the locus upon which the kinetochore assembles, and centromeres themselves are determined by their unique protein composition. Apart from budding yeast, centromeres are not specified simply by DNA sequence, but rather through chromatin composition and architecture and are thus epigenetically determined. Centromeres are built on a specific nucleosome not found elsewhere in the genome, in which histone H3 is replaced with a homologue – CENP-A or CenH3. This domain is flanked by heterochromatin and is folded to provide a 3-dimensional cylinder-like structure at metaphase that establishes the kinetochore on the surface of the mitotic chromosomes. A large family of CENtromere Proteins (CENPs) associates with centromeric chromatin throughout the cell cycle and are required for kinetochore function. Unlike the bulk of histones, CENP-A is not assembled concurrently with DNA synthesis in S-phase but rather assembles into the centromere in the subsequent G1 phase. The assembly of CENP-A chromatin following DNA replication and the re-establishment of this network of constitutive proteins have emerged as critical mechanisms for understanding how the centromere is replicated during the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC/C:

Anaphase Promoting Complex-Cyclosome

BUB:

Budding Uninhibited by Benzimidazole

CAD:

CENP-A Distal Complex

CAF1:

Chromatin Assembly Factor

CATD:

CENP-A Targeting Domain

CCAN:

Constitutive Centromere-Associated Network

CENP:

Centromere Protein

HAT1:

Histone AcetylTransferase catalytic subunit

HFD:

Histone Fold Domain

hFLEG1:

human Fetal Liver Expressing Gene 1

Hir1:

HIRA like histone chaperone

KMN:

Knl1-Mis12-Ndc80 complex

MAD:

Mitotic-Arrested Deficient

MCC:

Mitotic Checkpoint Complex

MPS1:

Multipolar Spindle 1

NAC:

Nucleosome Associated Complex

PEV:

Position Effect Variegation

PRC2:

Polycomb Repressive Complex 2

RZZ:

ROD-ZW10-Zwilch Complex

SAC:

Spindle Assembly Checkpoint

References

  • Allshire, R. C. and Karpen, G. H. (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 9(12), 923–937.

    CAS  PubMed  Google Scholar 

  • Alonso, A., Fritz, B., Hasson, D., Abrusan, G., Cheung, F., Yoda, K., Radlwimmer, B., Ladurner, A., and Warburton, P. (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol, 8, R148.

    PubMed  Google Scholar 

  • Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.

    CAS  PubMed  Google Scholar 

  • Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., and Plath, K. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    CAS  PubMed  Google Scholar 

  • Black, B. E., Brock, M. A., Bédard, S., Woods, V. L., and Cleveland, D. W. (2007a) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Nat Acad Sci, 104, 5008.

    CAS  PubMed  Google Scholar 

  • Black, B. E., Foltz, D. R., Chakravarthy, S., Luger, K., Woods, V. L., and Cleveland, D. W. (2004) Structural determinants for generating centromeric chromatin. Nature, 430, 578–582.

    CAS  PubMed  Google Scholar 

  • Black, B. E., Jansen, L. E. T., Maddox, P. S., Foltz, D. R., Desai, A. B., Shah, J. V., and Cleveland, D. W. (2007b) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell, 25, 309–322.

    CAS  PubMed  Google Scholar 

  • Blackwell, C., Martin, K. A., Greenall, A., Pidoux, A., Allshire, R. C., and Whitehall, S. K. (2004) The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol Cell Biol, 24, 4309–4320.

    CAS  PubMed  Google Scholar 

  • Blower, M. D., Sullivan, B. A., and Karpen, G. H. (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2, 319–330.

    CAS  PubMed  Google Scholar 

  • Bouck, D. and Bloom, K. (2005) The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Biochem Cell Biol, 83, 696.

    CAS  PubMed  Google Scholar 

  • Cheeseman, I. and Desai, A. (2008a) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol, 9, 33–46.

    CAS  PubMed  Google Scholar 

  • Cheeseman, I. M. and Desai, A. (2008b) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol, 9, 33–46.

    CAS  PubMed  Google Scholar 

  • Chen, E. S., Saitoh, S., Yanagida, M., and Takahashi, K. (2003) A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell, 11, 175–187.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Baker, R. E., Keith, K. C., Harris, K., Stoler, S., and Fitzgerald-Hayes, M. (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol, 20, 7037–7048.

    CAS  PubMed  Google Scholar 

  • Clarke, L. (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev, 8, 212–218.

    CAS  PubMed  Google Scholar 

  • Cleveland, D. W., Mao, Y., and Sullivan, K. F. (2003) Centromeres and kinetochores from epigenetics to mitotic checkpoint signaling. Cell, 112, 407–421.

    CAS  PubMed  Google Scholar 

  • Collins, K. A., Castillo, A. R., Tatsutani, S. Y., and Biggins, S. (2005) De novo kinetochore assembly requires the centromeric histone H3 variant. Mol Biol Cell, 16, 5649–5660.

    CAS  PubMed  Google Scholar 

  • Conde E. Silva, N., Black, B. E., Sivolob, A., Filipski, J., Cleveland, D. W., and Prunell, A. (2007) CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J Mol Biol, 370, 555–573.

    Google Scholar 

  • Dalal, Y., Wang, H., Lindsay, S., and Henikoff, S. (2007). Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol, 5, 1798–1809.

    Google Scholar 

  • Earnshaw, W. C. (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol, 104, 817–829.

    CAS  PubMed  Google Scholar 

  • Earnshaw, W. C. and Migeon, B. R. (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma, 92, 290–296.

    CAS  PubMed  Google Scholar 

  • Earnshaw, W. C. and Rothfield, N. (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 91, 313–321.

    CAS  PubMed  Google Scholar 

  • Ekwall, K. (2007) Epigenetic control of centromere behaviour. Annu Rev Genet, 41, 63–81.

    CAS  PubMed  Google Scholar 

  • Ekwall, K., Javerzat, J. P., Lorentz, A., Schmidt, H., Cranston, G., and Allshire, R. (1995) The chromodomain protein Swi6: a key component at fission yeast centromeres. Science, 269, 1429.

    CAS  PubMed  Google Scholar 

  • Ekwall, K., Olsson, T., Turner, B. M., Cranston, G., and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell, 91, 1021–1032.

    CAS  PubMed  Google Scholar 

  • Erhardt, S., Mellone, B. G., Betts, C. M., Zhang, W., Karpen, G. H., and Straight, A. F. (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol, 183, 805.

    CAS  PubMed  Google Scholar 

  • Fischle, W., Tseng, B. S., Dormann, H. L., Ueberheide, B. M., Garcia, B. A., Shabanowitz, J., Hunt, D. F., Funabiki, H., and Allis, C. D. (2005) Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature, 438, 1116–1122.

    CAS  PubMed  Google Scholar 

  • Fitzgerald-Hayes, M., Clarke, L., and Carbon, J. (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell, 29, 235.

    CAS  PubMed  Google Scholar 

  • Folco, H. D., Pidoux, A. L., Urano, T., and Allshire, R. C. (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science, 319, 94.

    CAS  PubMed  Google Scholar 

  • Foltz, D. R., Jansen, L. E., Black, B. E., Bailey, A. O., Yates, J. R., and Cleveland, D. W. (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol, 8, 458–469.

    CAS  PubMed  Google Scholar 

  • Fujita, Y., Hayashi, T., Kiyomitsu, T., Toyoda, Y., Kokubu, A., Obuse, C., and Yanagida, M. (2007) Priming of centromere for CENP-A recruitment by human hMis18a, hMis18ß, and M18BP1. Dev Cell, 12, 17–30.

    CAS  PubMed  Google Scholar 

  • Fukagawa, T., Mikami, Y., Nishihashi, A., Regnier, V., Haraguchi, T., Hiraoka, Y., Sugata, N., Todokoro, K., Brown, W., and Ikemura, T. (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J, 20, 4603–4617.

    CAS  PubMed  Google Scholar 

  • Furuyama, T., Dalal, Y., and Henikoff, S. (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Nat Acad Sci, 103, 6172–6177.

    CAS  PubMed  Google Scholar 

  • Gieni, R. S., Chan, G. K. T., and Hendzel, M. J. (2008) Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem, 104, 1949–1952.

    Google Scholar 

  • Goshima, G., Wollman, R., Goodwin, S. S., Zhang, N., Scholey, J. M., Vale, R. D., and Stuurman, N. (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science, 316, 417.

    CAS  PubMed  Google Scholar 

  • Gregan, J., Riedel, C. G., Pidoux, A. L., Katou, Y., Rumpf, C., Schleiffer, A., Kearsey, S. E., Shirahige, K., Allshire, R. C., and Nasmyth, K. (2007) The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol, 17, 1190–1200.

    CAS  PubMed  Google Scholar 

  • Grewal, S. I. S. and Elgin, S. C. R. (2007) Transcription and RNA interference in the formation of heterochromatin. Nature, 447, 399–406.

    CAS  PubMed  Google Scholar 

  • Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S. I. S. (2002) Establishment and maintenance of a heterochromatin domain. Science, 297, 2232–2237.

    CAS  PubMed  Google Scholar 

  • Hayashi, T., Fujita, Y., Iwasaki, O., Adachi, Y., Takahashi, K., and Yanagida, M. (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell, 118, 715–729.

    CAS  PubMed  Google Scholar 

  • Heeger, S., Leismann, O., Schittenhelm, R., Schraidt, O., Heidmann, S., and Lehner, C. F. (2005) Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev, 19, 2041–2053.

    CAS  PubMed  Google Scholar 

  • Heit, R., Underhill, D. A., Chan, G., and Hendzel, M. J. (2006) Epigenetic regulation of centromere formation and kinetochore function. Biochem Cell Biol, 84, 605–618.

    CAS  PubMed  Google Scholar 

  • Hemmerich, P., Weidtkamp-Peters, S., Hoischen, C., Schmiedeberg, L., Erliandri, I., and Diekmann, S. (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol, 180, 1101.

    CAS  PubMed  Google Scholar 

  • Henikoff, S. and Ahmad, K. (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol, 21, 133–153.

    CAS  PubMed  Google Scholar 

  • Henikoff, S., Ahmad, K., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 293, 1098–1102.

    CAS  PubMed  Google Scholar 

  • Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B. (2000) Heterochromatic deposition of centromeric histone H3-like proteins.. Proc Natl Acad Sci USA 97, 716–721.

    CAS  PubMed  Google Scholar 

  • Henikoff, S. and Dalal, Y. (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev, 15, 177–184.

    CAS  PubMed  Google Scholar 

  • Hori, T., Okada, M., Maenaka, K., and Fukagawa, T. (2008) CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell, 19, 843.

    CAS  PubMed  Google Scholar 

  • Howell, B., Hoffman, D., Fang, G., Murray, A., and Salmon, E. (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol, 150, 1233–1250.

    CAS  PubMed  Google Scholar 

  • Huang, H., Hittle, J., Zappacosta, F., Annan, R., Hershko, A., and Yen, T. (2008) Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol, 183, 667–680.

    CAS  PubMed  Google Scholar 

  • Hudson, D. F., Fowler, K. J., Earle, E., Saffery, R., Kalitsis, P., Trowell, H., Hill, J., Wreford, N. G., de Kretser, D. M., and Cancilla, M. R. (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol, 141, 309–319.

    CAS  PubMed  Google Scholar 

  • Izuta, H., Ikeno, M., Suzuki, N., Tomonaga, T., Nozaki, N., Obuse, C., Kisu, Y., Goshima, N., Nomura, F., and Nomura, N. (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells, 11, 673.

    CAS  PubMed  Google Scholar 

  • Jansen, L. E. T., Black, B. E., Foltz, D. R., and Cleveland, D. W. (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol, 176, 795–805.

    CAS  PubMed  Google Scholar 

  • Keith, K. C., Baker, R. E., Chen, Y., Harris, K., Stoler, S., and Fitzgerald-Hayes, M. (1999) Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol, 19, 6130–6139.

    CAS  PubMed  Google Scholar 

  • Kulukian, A., Han, J., and Cleveland, D. (2009) Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell, 16, 105–117.

    CAS  PubMed  Google Scholar 

  • Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Honda, S., Kobayashi, O., Hatakeyama, K., Ushio, Y., Saya, H., and Hirota, T. (2003) CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell, 5, 853–864.

    CAS  PubMed  Google Scholar 

  • Liu, S., Hittle, J., Jablonski, S., Campbell, M., Yoda, K., and Yen, T. (2003) Human CENP-I specifies localization of CENP-F, Mad1 and Mad2 to kinetochores and is essential for mitosis. Nat Cell Biol, 5, 341–345.

    CAS  PubMed  Google Scholar 

  • Liu, S., Rattner, J., Jablonski, S., and Yen, T. (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol, 175, 41–53.

    CAS  PubMed  Google Scholar 

  • Lo, A. W. I., Craig, J. M., Saffery, R., Kalitsis, P., Irvine, D. V., Earle, E., Magliano, D. J., and Choo, K. H. A. (2001) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J, 20, 2087–2096.

    CAS  PubMed  Google Scholar 

  • Logarinho, E. and Bousbaa, H. (2008) Kinetochore-microtubule interactions” in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signaling. Cell Cycle, 7(12), 1763–1768.

    CAS  PubMed  Google Scholar 

  • Loyola, A. and Almouzni, G. (2004) Histone chaperones, a supporting role in the limelight. BBA-Gene Struct Exp, 1677, 3–11.

    CAS  Google Scholar 

  • Maison, C., Bailly, D., Peters, A., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T., and Almouzni, G. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet, 30, 329–334.

    PubMed  Google Scholar 

  • Marshall, O. J., Chueh, A. C., Wong, L. H., and Choo, K. H. A. (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Human Genet, 82, 261–282.

    CAS  Google Scholar 

  • Masumoto, H., Nakano, M., and Ohzeki, J. (2004) The role of CENP-B and a-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res, 12, 543–556.

    CAS  PubMed  Google Scholar 

  • McAinsh, A., Tytell, J., and Sorger, P. (2003) Structure, function and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol, 19, 519–539.

    CAS  PubMed  Google Scholar 

  • Medema, R. (2009) Relaying the checkpoint signal from kinetochore to APC/C. Dev Cell, 16, 6–8.

    CAS  PubMed  Google Scholar 

  • Mellone, B. G., Ball, L., Suka, N., Grunstein, M. R., Partridge, J. F., and Allshire, R. C. (2003) Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr Biol, 13, 1748–1757.

    CAS  PubMed  Google Scholar 

  • Meluh, P. B. and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell, 6, 793–807.

    CAS  PubMed  Google Scholar 

  • Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D., and Smith, M. M. (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell, 94, 607–614.

    CAS  PubMed  Google Scholar 

  • Meraldi, P., McAinsh, A., Rheinbay, E., and Sorger, P. (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol, 7, R23.

    PubMed  Google Scholar 

  • Mikami, Y., Hori, T., Kimura, H., and Fukagawa, T. (2005) The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis. Supplemental material for this article may be found at http://mcb. asm. org. Mol Cell Biol 25, 1958–1970.

    CAS  PubMed  Google Scholar 

  • Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., and Koche, R. P. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.

    CAS  PubMed  Google Scholar 

  • Minoshima, Y., Hori, T., Okada, M., Kimura, H., Haraguchi, T., Hiraoka, Y., Bao, Y. C., Kawashima, T., Kitamura, T., and Fukagawa, T. (2005) The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol Cell Biol, 25, 10315–10328.

    CAS  PubMed  Google Scholar 

  • Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M., and Wu, C. (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell, 129, 1153–1164.

    CAS  PubMed  Google Scholar 

  • Moore, L. L. and Roth, M. B. (2001) HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol, 153, 1199–1208.

    CAS  PubMed  Google Scholar 

  • Musacchio, A. and Salmon, E. (2007a) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8, 379–393.

    CAS  PubMed  Google Scholar 

  • Musacchio, A. and Salmon, E. D. (2007b) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8, 379–393.

    CAS  PubMed  Google Scholar 

  • Nakano, M., Okamoto, Y., Ohzeki, J., and Masumoto, H. (2003) Epigenetic assembly of centromeric chromatin at ectopic a-satellite sites on human chromosomes. J Cell Sci, 116, 4021–4034.

    CAS  PubMed  Google Scholar 

  • Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D., and Grewal, S. I. S. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 292, 110–113.

    CAS  PubMed  Google Scholar 

  • Nishihashi, A., Haraguchi, T., Hiraoka, Y., Ikemura, T., Regnier, V., Dodson, H., Earnshaw, W. C., and Fukagawa, T. (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell, 2, 463–476.

    CAS  PubMed  Google Scholar 

  • Obuse, C., Iwasaki, O., Kiyomitsu, T., Goshima, G., Toyoda, Y., and Yanagida, M. (2004) A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol, 6, 1135–1141.

    CAS  PubMed  Google Scholar 

  • Oegema, K., Desai, A., Rybina, S., Kirkham, M., and Hyman, A. A. (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol, 153, 1209–1226.

    CAS  PubMed  Google Scholar 

  • Ohzeki, J., Nakano, M., Okada, T., and Masumoto, H. (2002) CENP-B Box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol, 159, 765–775.

    CAS  PubMed  Google Scholar 

  • Okada, M., Cheeseman, I. M., Hori, T., Okawa, K., McLeod, I. X., Yates, J. R. III, Desai, A., and Fukagawa, T. (2006) The CENP-HI complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol, 8, 446–457.

    CAS  PubMed  Google Scholar 

  • Okada, T., Ohzeki, J., Nakano, M., Yoda, K., Brinkley, W. R., Larionov, V., and Masumoto, H. (2007) CENP-B controls centromere formation depending on the chromatin context. Cell, 131, 1287–1300.

    CAS  PubMed  Google Scholar 

  • Ortiz, J., Stemmann, O., Rank, S., and Lechner, J. (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev, 13, 1140–1155.

    CAS  PubMed  Google Scholar 

  • Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Rao, M., Bhadra, U., Birchler, J. A., and Elgin, S. C. R. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 303, 669–672.

    CAS  PubMed  Google Scholar 

  • Palmer, D. K. (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol, 104, 805–815.

    CAS  PubMed  Google Scholar 

  • Palmer, D. K. and Margolis, R. L. (1985) Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol Cell Biol, 5, 173–186.

    CAS  PubMed  Google Scholar 

  • Palmer, D. K., O’Day, K., Trong, H. L., Charbonneau, H., and Margolis, R. L. (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Nat Acad Sci, 88, 3734–3738.

    CAS  PubMed  Google Scholar 

  • Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G. A., Stewart, R., and Thomson, J. A. (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1, 299–312.

    CAS  PubMed  Google Scholar 

  • Peters, A., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., Weipoltshammer, K., Pagani, M., Lachner, M., and Kohlmaier, A. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 107, 323–337.

    CAS  PubMed  Google Scholar 

  • Pidoux, A. L., Choi, E. S., Abbott, J. K. R., Liu, X., Kagansky, A., Castillo, A. G., Hamilton, G. L., Richardson, W., Rappsilber, J., and He, X. (2009) Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol Cell, 33, 299–311.

    CAS  PubMed  Google Scholar 

  • Pidoux, A. L., Richardson, W., and Allshire, R. C. (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol, 161, 295.

    CAS  PubMed  Google Scholar 

  • Regnier, V., Vagnarelli, P., Fukagawa, T., Zerjal, T., Burns, E., Trouche, D., Earnshaw, W., and Brown, W. (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol, 25, 3967–3981.

    CAS  PubMed  Google Scholar 

  • Saffery, R., Irvine, D. V., Griffiths, B., Kalitsis, P., Wordeman, L., and Choo, K. H. A. (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Human Mol Genet, 9(2), 175–185.

    CAS  Google Scholar 

  • Saitoh, H., Tomkiel, J., Cooke, C. A., Ratrie, H., Maurer, M., Rothfield, N. F., and Earnshaw, W. C. (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell, 70, 115–125.

    CAS  PubMed  Google Scholar 

  • Schaar, B., Chan, G., Maddox, P., Salmon, E., and Yen, T. (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol, 139, 1373–1382.

    CAS  PubMed  Google Scholar 

  • Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K., and Willard, H. F. (2001) Genomic and genetic definition of a functional human centromere. Science, 294, 109–115.

    CAS  PubMed  Google Scholar 

  • Schuh, M., Lehner, C. F., and Heidmann, S. (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol, 17, 237–243.

    CAS  PubMed  Google Scholar 

  • Sharp, J. A., Franco, A. A., Osley, M. A., and Kaufman, P. D. (2002) Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev, 16, 85–100.

    CAS  PubMed  Google Scholar 

  • Shelby, R. D., Monier, K., and Sullivan, K. F. (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol, 151, 1113–1118.

    CAS  PubMed  Google Scholar 

  • Shelby, R. D., Vafa, O., and Sullivan, K. F. (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol, 136, 501–513.

    CAS  PubMed  Google Scholar 

  • Stoler, S., Keith, K. C., Curnick, K. E., and Fitzgerald-Hayes, M. (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev, 9, 573–586.

    CAS  PubMed  Google Scholar 

  • Sugata, N., Li, S., Earnshaw, W. C., Yen, T. J., Yoda, K., Masumoto, H., Munekata, E., Warburton, P. E., and Todokoro, K. (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes. Human Mol Genet, 9(19), 2919–2926.

    CAS  Google Scholar 

  • Sullivan, B. A., Blower, M. D., and Karpen, G. H. (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet, 2, 584–596.

    CAS  PubMed  Google Scholar 

  • Sullivan, B. A. and Karpen, G. H. (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol, 11, 1076–1083.

    CAS  PubMed  Google Scholar 

  • Sullivan, B. A. and Schwartz, S. (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Human Mol Genet, 4, 2189–2197.

    CAS  Google Scholar 

  • Sullivan, B. A. and Willard, H. F. (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20, 227–228.

    CAS  PubMed  Google Scholar 

  • Sullivan, K. F. (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol, 127, 581–592.

    CAS  PubMed  Google Scholar 

  • Sun, X., Wahlstrom, J., and Karpen, G. (1997) Molecular structure of a functional Drosophila centromere. Cell, 91, 1007–1019.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., Chen, E. S., and Yanagida, M. (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science, 288, 2215–2219.

    CAS  PubMed  Google Scholar 

  • Takayama, Y., Sato, H., Saitoh, S., Ogiyama, Y., Masuda, F., and Takahashi, K. (2008) Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol Biol Cell, 19, 682.

    CAS  PubMed  Google Scholar 

  • Talbert, P. B., Bryson, T. D., and Henikoff, S. (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol, 3, 18.

    PubMed  Google Scholar 

  • Tan, E. M., Rodnan, G. P., Garcia, I., Moroi, Y., Fritzler, M. J., and Peebles, C. (1980) Diversity of antinuclear antibodies in progressive systemic sclerosis. Arthritis Rheum, 23, 617–625.

    CAS  PubMed  Google Scholar 

  • Vermaak, D., Hayden, H. S., and Henikoff, S. (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol, 22, 7553–7561.

    CAS  PubMed  Google Scholar 

  • Verreault, A., Kaufman, P. D., Kobayashi, R., and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell, 87, 95–104.

    CAS  PubMed  Google Scholar 

  • Vigneron, S., Prieto, S., Bernis, C., Labbe, J., Castro, A., and Lorca, T. (2004) Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell, 15, 4584–4596.

    CAS  PubMed  Google Scholar 

  • Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. S., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837.

    CAS  PubMed  Google Scholar 

  • Walfridsson, J., Bjerling, P., Thalen, M., Yoo, E. J., Park, S. D., and Ekwall, K. (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res, 33, 2868.

    CAS  PubMed  Google Scholar 

  • Warburton, P. E. (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res, 12, 617–626.

    CAS  PubMed  Google Scholar 

  • Weaver, B. and Cleveland, D. (2005) Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.

    CAS  PubMed  Google Scholar 

  • Williams, J. S., Hayashi, T., Yanagida, M., and Russell, P. (2009) Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell, 33, 287–298.

    CAS  PubMed  Google Scholar 

  • Yang, Z., Tulu, U., Wadsworth, P., and Rieder, C. (2007) Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol, 17, 973–980.

    CAS  PubMed  Google Scholar 

  • Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., and Cleveland, D. W. (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol, 2, 484–491.

    CAS  PubMed  Google Scholar 

  • Yeh, E., Haase, J., Paliulis, L. V., Joglekar, A., Bond, L., Bouck, D., Salmon, E. D., and Bloom, K. S. (2008) Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol, 18, 81–90.

    CAS  PubMed  Google Scholar 

  • Yoda, K., Ando, S., Morishita, S., Houmura, K., Hashimoto, K., Takeyasu, K., and Okazaki, T. (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA, 97, 7266–7271.

    CAS  PubMed  Google Scholar 

  • Zeitlin, S. G., Shelby, R. D., and Sullivan, K. F. (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis The online version of this article contains supplemental material. J Cell Biol, 155, 1147–1158.

    CAS  PubMed  Google Scholar 

  • Zhang, R., Chen, W., and Adams, P. D. (2007) Molecular dissection of formation of senescence-associated heterochromatin foci?. Mol Cell Biol, 27, 2343–2358.

    CAS  PubMed  Google Scholar 

  • Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., Orlov, Y. L., Sung, W. K., Shahab, A., and Kuznetsov, V. A. (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell, 1, 286–298.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin F. Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Glynn, M., Kaczmarczyk, A., Prendergast, L., Quinn, N., Sullivan, K.F. (2010). Centromeres: Assembling and Propagating Epigenetic Function. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_12

Download citation

Publish with us

Policies and ethics