Skip to main content

Changes in Lysosomes and Their Autophagic Function in Aging: The Comparative Biology of Lysosomal Function

  • Chapter
  • First Online:
The Comparative Biology of Aging

Abstract

The lysosome, the organelle with the greatest degradative capability in the cell, is an essential component of the systems responsible for cellular quality control. Lysosome malfunctioning alters cellular homeostasis and has been proposed to contribute to the accumulation of abnormal and damaged intracellular components in different human pathologies and aging organisms. In this chapter, we summarize the most recent advances in the characterization of the complex subset of molecular components that contribute to proper lysosomal functioning. We also provide a comparative analysis of the main properties and components of the lysosomal system in different species and review the evolutive changes of this essential catabolic pathway. A more complete characterization of the lysosomal system has recently revealed the importance of lysosomes in cellular physiology and has helped establish causal connections between impaired lysosomal function and certain diseases. In the last part of this chapter, we provide a brief summary of these connections with special emphasis on lysosomal changes in age-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizushima N, Levine B, Cuervo A et al. (2008). Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N and Klionsky D (2007). Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27: 19–40.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg AL (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35: 12–17.

    Article  CAS  PubMed  Google Scholar 

  4. Lecker SH, Goldberg AL, and Mitch WE (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17: 1807–1819.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Vicente M, Sovak G, and Cuervo AM (2005). Protein degradation and aging. Exp Gerontol 40: 622–633.

    Article  CAS  PubMed  Google Scholar 

  6. Ward W (2002). Protein degradation in the aging organism. Prog Mol Subcell Biol 29: 35–42.

    CAS  PubMed  Google Scholar 

  7. Squier T (2001). Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36: 1539–1550.

    Article  CAS  PubMed  Google Scholar 

  8. Cuervo AM, Stefanis L, Fredenburg R, et al. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  9. Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 18: 895–899.

    Article  CAS  Google Scholar 

  10. Balch WE, Morimoto RI, Dillin A, et al. (2008). Adapting proteostasis for disease intervention. Science 319: 916–919.

    Article  CAS  PubMed  Google Scholar 

  11. Finkbeiner S, Cuervo AM, Morimoto RI, et al. (2006). Disease-modifying pathways in neurodegeneration. J Neurosci 26: 10349–10357.

    Article  CAS  PubMed  Google Scholar 

  12. Morimoto RI (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22: 1427–1438.

    Article  CAS  PubMed  Google Scholar 

  13. Kopito RR and Sitia R (2000). Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 1: 225–231.

    Article  CAS  PubMed  Google Scholar 

  14. Ciechanover A (2006). Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Hematology Am Soc Hematol Educ Program 1: 505–6.

    Google Scholar 

  15. Cuervo AM (2004). Autophagy: many pathways to the same end. Mol Cell Biochem 263: 55–72.

    Article  CAS  PubMed  Google Scholar 

  16. Mizushima N (2005). The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12: 1535–1541.

    Article  CAS  PubMed  Google Scholar 

  17. Tsukamoto S, Kuma A, Murakami M, et al. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science 321: 117–120.

    Article  CAS  PubMed  Google Scholar 

  18. Fimia GM, Stoykova A, Romagnoli A, et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121–1125.

    CAS  PubMed  Google Scholar 

  19. Levine B and Klionsky D (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477.

    Article  CAS  PubMed  Google Scholar 

  20. Yun C, Stanhill A, Yang Y, et al. (2008). Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci USA 105: 7094–7099.

    Article  CAS  PubMed  Google Scholar 

  21. Cuervo AM (2008). Autophagy and Aging: keeping that old broom working. Trends Genet 24: 604–612.

    Article  CAS  PubMed  Google Scholar 

  22. Chondrogianni N and Gonos ES (2008). Proteasome activation as a novel antiaging strategy. IUBMB Life 60: 651–655.

    Article  CAS  PubMed  Google Scholar 

  23. Hwang JS, Chang I, and Kim S (2007). Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci 62: 490–499.

    PubMed  Google Scholar 

  24. Farout L and Friguet B (2006). Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 8: 205–216.

    Article  CAS  PubMed  Google Scholar 

  25. Pickart CM and Cohen RE (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5: 177–187.

    Article  CAS  PubMed  Google Scholar 

  26. Ciechanover A (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6: 79–87.

    Article  CAS  PubMed  Google Scholar 

  27. Ravid T and Hochstrasser M (2008). Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9: 679–690.

    Article  CAS  PubMed  Google Scholar 

  28. Hanna J and Finley D (2007). A proteasome for all occasions. FEBS Lett 581: 2854–2861.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou P (2005). Targeted protein degradation. Curr Opin Chem Biol 9: 51–55.

    Article  CAS  PubMed  Google Scholar 

  30. De Duve C and Wattiaux R (1966). Functions of lysosomes. [Review]. Ann Rev Physiol 28: 435–492.

    Article  Google Scholar 

  31. Weisman LS (2003). Yeast vacuole inheritance and dynamics. Annu Rev Genet 37: 435–460.

    Article  CAS  PubMed  Google Scholar 

  32. Bowers K and Stevens TH (2005). Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744: 438–454.

    Article  CAS  PubMed  Google Scholar 

  33. Weisman LS (2006). Organelles on the move: insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol 7: 243–252.

    Article  CAS  PubMed  Google Scholar 

  34. Thumm M (2000). Structure and function of the yeast vacuole and its role in autophagy. Microsc Res Tech 51: 563–572.

    Article  CAS  PubMed  Google Scholar 

  35. Pruyne D, Legesse-Miller A, Gao L, et al. (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20: 559–591.

    Article  CAS  PubMed  Google Scholar 

  36. Sekito T, Fujiki Y, Ohsumi Y, et al. (2008). Novel families of vacuolar amino acid transporters. IUBMB Life 60: 519–525.

    Article  CAS  PubMed  Google Scholar 

  37. Bassham DC and Raikhel NV (2000). Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12: 491–495.

    Article  CAS  PubMed  Google Scholar 

  38. Bassham DC, Laporte M, Marty F, et al. (2006). Autophagy in development and stress responses of plants. Autophagy 2: 2–11.

    CAS  PubMed  Google Scholar 

  39. Mo B, Tse YC, and Jiang L (2006). Plant prevacuolar/endosomal compartments. Int Rev Cytol 253: 95–129.

    Article  CAS  PubMed  Google Scholar 

  40. Muntz K (2007). Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58: 2391–2407.

    Article  PubMed  CAS  Google Scholar 

  41. Seaman MN (2008). Endosome protein sorting: motifs and machinery. Cell Mol Life Sci 65: 2842–2858.

    Article  CAS  PubMed  Google Scholar 

  42. Cullen PJ (2008). Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9: 574–582.

    Article  CAS  PubMed  Google Scholar 

  43. Geldner N and Jurgens G (2006). Endocytosis in signalling and development. Curr Opin Plant Biol 9: 589–594.

    Article  CAS  PubMed  Google Scholar 

  44. Besterman JM and Low RB (1983). Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem J 210: 1–13.

    CAS  PubMed  Google Scholar 

  45. Marshall JG, Booth JW, Stambolic V, et al. (2001). Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153: 1369–1380.

    Article  CAS  PubMed  Google Scholar 

  46. Desjardins M, Houde M, and Gagnon E (2005). Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol Rev 207: 158–165.

    Article  CAS  PubMed  Google Scholar 

  47. Rappoport JZ (2008). Focusing on clathrin-mediated endocytosis. Biochem J 412: 415–423.

    Article  CAS  PubMed  Google Scholar 

  48. Casey CA, Lee SM, Aziz-Seible R, et al. (2008). Impaired receptor-mediated endocytosis: its role in alcohol-induced apoptosis. J Gastroenterol Hepatol 23(Suppl 1): S46–S49.

    Article  CAS  PubMed  Google Scholar 

  49. D‘Hondt K, Heese-Peck A, and Riezman H (2000). Protein and lipid requirements for endocytosis. Ann Rev Genetics 34: 255–295.

    Article  Google Scholar 

  50. Saksena S, Sun J, Chu T, et al. (2007). ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32: 561–573.

    Article  CAS  PubMed  Google Scholar 

  51. Predescu SA, Predescu DN, and Malik AB (2007). Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293: L823–L842.

    Article  CAS  PubMed  Google Scholar 

  52. Levine B (2005). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120: 159–162.

    CAS  PubMed  Google Scholar 

  53. Klionsky DJ (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118: 7–18.

    Article  CAS  PubMed  Google Scholar 

  54. Cuervo AM (2004). Autophagy: in sickness and in health. Trends Cell Biol 14: 70–77.

    Article  PubMed  CAS  Google Scholar 

  55. Mortimore G, Miotto G, Venerando R, et al. (1996). Autophagy. Biochemistry 27: 93–135.

    CAS  Google Scholar 

  56. Tsukada M and Ohsumi M (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333: 169–174.

    Article  CAS  PubMed  Google Scholar 

  57. Thumm M (1994). Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275–280.

    Article  CAS  PubMed  Google Scholar 

  58. Harding TM, Hefner-Gravink A, Thumm M, et al. (1996). Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem 271: 17621–17624.

    Article  CAS  PubMed  Google Scholar 

  59. Mizushima N, Ohsumi Y, and Yoshimori T (2002). Autophagosome formation in mammalian cells. Cell Struct Funct 27: 421–429.

    Article  PubMed  Google Scholar 

  60. Seglen PO, Berg TO, Blankson H, et al. (1996). Structural aspects of autophagy. Advanc Exp Med Biol 389: 103–111.

    CAS  Google Scholar 

  61. Noda T, Suzuki K, and Ohsumi Y (2002). Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12: 231–235.

    Article  CAS  PubMed  Google Scholar 

  62. Yorimitsu T and Klionsky DJ (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12: 1542–1552.

    Article  CAS  PubMed  Google Scholar 

  63. Ohsumi Y (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211–216.

    Article  CAS  PubMed  Google Scholar 

  64. Tassa A, Roux MP, Attaix D, and Bechet DM (2003). Class III phosphoinositide 3-kinase-Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376: 577–586.

    Article  CAS  PubMed  Google Scholar 

  65. Mordier S, Deval C, Bechet D, et al. (2000). Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275: 29900–29906.

    Article  CAS  PubMed  Google Scholar 

  66. Kanazawa T, Taneike I, Akaishi R, et al. (2004). Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279: 8452–8459.

    Article  CAS  PubMed  Google Scholar 

  67. Kadowaki M and Kanazawa T (2003). Amino acids as regulators of proteolysis. J Nutr 133: 2052S–2056S.

    CAS  PubMed  Google Scholar 

  68. Meijer AJ and Codogno P (2004). Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36: 2445–2462.

    Article  CAS  PubMed  Google Scholar 

  69. Dunn W (1994). Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4: 139–143.

    Article  CAS  PubMed  Google Scholar 

  70. Klionsky D, Cregg J, Dunn WJ, et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 539–545.

    Google Scholar 

  71. Tanida I, Tanida-Miyake E, Komatsu M, et al. (2002). Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277: 13739–13744.

    Article  CAS  PubMed  Google Scholar 

  72. Mortimore GE and Poso AR (1987). Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann Rev Nutri 7: 539–564.

    Article  CAS  Google Scholar 

  73. Blommaart EF, Luiken JJ, and Meijer AJ (1997). Autophagic proteolysis: control and specificity. Histochem J 29: 365–385.

    Article  CAS  PubMed  Google Scholar 

  74. Kuma A, Hatano M, Matsui M, et al. (2004). The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  75. Hara T, Nakamura K, Matsui M, et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885–889.

    Article  CAS  PubMed  Google Scholar 

  76. Komatsu M, Waguri S, Chiba T, et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  77. Nakai A, Yamaguchi O, Takeda T, et al. (2007). The role of autophagy in cardiomyocites in the basal state and in response to hemodynamic stress. Nat Med 13: 619–624.

    Article  CAS  PubMed  Google Scholar 

  78. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, and Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434.

    Article  CAS  PubMed  Google Scholar 

  79. Bernales S, McDonald KL, and Walter P (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423.

    Article  PubMed  CAS  Google Scholar 

  80. Lemasters J (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8: 3–5.

    Article  CAS  PubMed  Google Scholar 

  81. Mortimore GE, Lardeux BR, and Adams CE (1988). Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 263: 2506–2512.

    CAS  PubMed  Google Scholar 

  82. Ahlberg J, Marzella L, and Glaumann H (1982). Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest 47: 523–532.

    CAS  PubMed  Google Scholar 

  83. Marzella L, Ahlberg J, and Glaumann H (1981). Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Archiv B Cell Pathol 36: 219–234.

    Article  CAS  Google Scholar 

  84. Mukaiyama H, Oku M, Baba M, et al. (2002). Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7: 75–90.

    Article  CAS  PubMed  Google Scholar 

  85. Veenhuis M, Salomons FA, and Van Der Klei IJ (2000). Peroxisome biogenesis and degradation in yeast: a structure/function analysis. Microsc Res Tech 51: 584–600.

    Article  CAS  PubMed  Google Scholar 

  86. Roberts P, Moshitch-Moshkovitz S, Kvam E, et al. (2003). Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14: 129–141.

    Article  CAS  PubMed  Google Scholar 

  87. Farre JC and Subramani S (2004). Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol 14: 515–523.

    Article  CAS  PubMed  Google Scholar 

  88. Dice J (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15: 305–309.

    Article  CAS  PubMed  Google Scholar 

  89. Chiang H, Terlecky S, Plant C, et al. (1989). A role for a 70 kDa heat shock protein in lysosomal degradation of intracellular protein. Science 246: 382–385.

    Article  CAS  PubMed  Google Scholar 

  90. Agarraberes F and Dice JF (2001). A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114: 2491–2499.

    CAS  PubMed  Google Scholar 

  91. Cuervo A and Dice J (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273: 501–503.

    Article  CAS  PubMed  Google Scholar 

  92. Bandhyopadhyay U, Kaushik S, Vartikovsky L, et al. (2008). Dynamic organization of the receptor for chaperone-mediated autophagy at the lysosomal membrane. Mol Cell Biol 28: 5747–5763.

    Article  Google Scholar 

  93. Agarraberes F, Terlecky S, and Dice J (1997). An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137: 825–834.

    Article  CAS  PubMed  Google Scholar 

  94. Cuervo A, Dice J, and Knecht E (1997). A lysosomal population responsible for the hsc73-mediated degradation of cytosolic proteins in lysosomes. J Biol Chem 272: 5606–5615.

    Article  CAS  PubMed  Google Scholar 

  95. Dice J (2007). Chaperone-mediated autophagy. Autophagy 3: 295–299.

    CAS  PubMed  Google Scholar 

  96. Massey A, Zhang C, and Cuervo A (2006). Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73: 205–235.

    Article  CAS  PubMed  Google Scholar 

  97. Cuervo A and Dice J (2000). Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113: 4441–4450.

    CAS  PubMed  Google Scholar 

  98. Cuervo A and Dice J (2000). Regulation of lamp2a levels in the lysosomal membrane. Traffic 1: 570–583.

    Article  CAS  PubMed  Google Scholar 

  99. Kaushik S, Massey AC, and Cuervo AM (2006). Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 25: 3921–3933.

    Article  CAS  PubMed  Google Scholar 

  100. Kiffin R, Christian C, Knecht E, et al. (2004). Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15: 4829–4840.

    Article  CAS  PubMed  Google Scholar 

  101. Chiang H, Schekman R, and Hamamoto S (1996). Selective uptake of cytosolic, peroxisomal and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 271: 9934–9941.

    Article  CAS  PubMed  Google Scholar 

  102. Hung GC, Brown CR, Wolfe AB, et al. (2004). Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279: 49138–49150.

    Article  CAS  PubMed  Google Scholar 

  103. Huang PH and Chiang HL (1997). Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 136: 803–810.

    Article  CAS  PubMed  Google Scholar 

  104. Brown CR, Liu J, Hung GC, et al. (2003). The Vid vesicle to vacuole trafficking event requires components of the SNARE membrane fusion machinery. J Biol Chem 278: 25688–25699.

    Article  CAS  PubMed  Google Scholar 

  105. Harding TM (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuoles protein targeting pathway. J Cell Biol 131: 591–602.

    Article  CAS  PubMed  Google Scholar 

  106. Khalfan WA and Klionsky DJ (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14: 468–475.

    Article  CAS  PubMed  Google Scholar 

  107. Kim J, Dalton VM, Eggerton KP, et al. (1999). Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10: 1337–1351.

    CAS  PubMed  Google Scholar 

  108. Guan J, Stromhaug P, George M, et al. (2001). Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12: 3821–3838.

    CAS  PubMed  Google Scholar 

  109. Huang WP and Klionsky DJ (2002). Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27: 409–420.

    Article  CAS  PubMed  Google Scholar 

  110. Qin ZH, Wang Y, Kegel KB, et al. (2003). Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 12: 3231–3244.

    Article  CAS  PubMed  Google Scholar 

  111. Massey AC, Kaushik S, Sovak G, et al. (2006). Consequences of the selective blockage of chaperone-mediated autophagy. Proc Nat Acad Sci USA 103: 5905–5910.

    Article  CAS  Google Scholar 

  112. Levine B and Deretic V (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7: 767–777.

    Article  CAS  PubMed  Google Scholar 

  113. Singh R, Kaushik S, Wang Y, et al. (2009). Autophagy regulates lipid metabolism. Nature, 458: 1131–1135.

    Article  CAS  Google Scholar 

  114. Zhou D, Li P, Lin Y, et al. (2005). Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22: 571–581.

    Article  CAS  PubMed  Google Scholar 

  115. Kiffin R, Bandyopadhyay U, and Cuervo A (2006). Oxidative stress and autophagy. Antioxid Redox Signal 8: 152–162.

    Article  CAS  PubMed  Google Scholar 

  116. Stadtman E (2001). Protein oxidation in aging and age-related diseases. Ann NY Acad Sci 928: 22–38.

    Article  CAS  PubMed  Google Scholar 

  117. Ryazanov A and Nefsky B (2002). Protein turnover plays a key role in aging. Mech Ageing Dev 123: 207–213.

    Article  CAS  PubMed  Google Scholar 

  118. Gershon H and Gershon D (1970). Detection of inactive molecules in aging organisms. Nature 227: 1214–1217.

    Article  CAS  PubMed  Google Scholar 

  119. Miquel J, Tapperl A, Dillard C, et al. (1974). Fluorescent products and lysosomal components in aging. Drosophila Melanogaster J Gerontol 29: 622–637.

    CAS  Google Scholar 

  120. Goldstein S, Stotland D, and Cordeiro R (1976). Decreased proteolysis and increased amino acid efflux in aging human fibroblasts. Mech Ageing Dev 5: 221–233.

    Article  CAS  PubMed  Google Scholar 

  121. Hipkiss AR (2006). Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41: 464–473.

    Article  CAS  PubMed  Google Scholar 

  122. Kurz T, Terman A, and Brunk UT (2007). Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462: 220–230.

    Article  CAS  PubMed  Google Scholar 

  123. Cuervo AM (2006). Autophagy in neurons: it is not all about food. Trends Mol Med 12: 461–464.

    Article  CAS  PubMed  Google Scholar 

  124. Martinez-Vicente M and Cuervo AM (2007). Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6: 352–361.

    Article  CAS  PubMed  Google Scholar 

  125. Viteri G, Carrard G, Birlouez-Aragon I, et al. (2004). Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys 427: 197–203.

    Article  CAS  PubMed  Google Scholar 

  126. Terman A and Brunk U (1998). Lipofuscin – Mechanisms of formation and increase with age. APMIS 106: 265–276.

    Article  CAS  PubMed  Google Scholar 

  127. Terman A and Brunk UT (2004). Lipofuscin. Int J Biochem Cell Biol 36: 1400–1404.

    Article  CAS  PubMed  Google Scholar 

  128. Neufeld EF (1991). Lysosomal storage diseases. Annu Rev Biochem 60: 257–280.

    Article  CAS  PubMed  Google Scholar 

  129. Wenger D, Coppola S, and Liu S (2002). Lysosomal storage disorders: diagnostic dilemmas and prospects for therapy. Genet Med 4: 412–419.

    Article  CAS  PubMed  Google Scholar 

  130. Terman A (1995). The effect of age on formation an elimination of autophagic vacuoles in mouse hepatocyte. Gerontology 41: 319–325.

    Article  PubMed  Google Scholar 

  131. Cuervo AM, Dice JF, and Knecht E (1997). A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272: 5606–5615.

    Article  CAS  PubMed  Google Scholar 

  132. Cuervo AM, Bergamini E, Brunk UT, et al. (2005). Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1: 131–140.

    Article  PubMed  Google Scholar 

  133. Bergamini E, Bombara M, Roso AD, et al. (1995). The regulation of liver protein degradation by amino acids in vivo: Effect of glutamine and leucine. Arch Physiol Biochem 103: 512–515.

    Article  CAS  PubMed  Google Scholar 

  134. Vittorini S, Paradiso C, Donati A, et al. (1999). The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities. J Gerontol 54: B318–B323.

    CAS  Google Scholar 

  135. Donati A, Cavallini G, Paradiso C, et al. (2001). Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol 56: B375–B383.

    CAS  Google Scholar 

  136. Donati A, Ventruti A, Cavallini G, et al. (2008). In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver. Biochem Biophys Res Commun 366: 786–792.

    Article  CAS  PubMed  Google Scholar 

  137. Brunk U and Terman A (2002). Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Rad Biol Med 33: 611–619.

    Article  CAS  PubMed  Google Scholar 

  138. Cuervo AM and Dice JF (2000). Age-related decline in chaperone-mediated autophagy. J Biol Chem 275: 31505–31513.

    Article  CAS  PubMed  Google Scholar 

  139. Kiffin R, Kaushik S, Zeng M, et al. (2007). Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120: 782–791.

    Article  CAS  PubMed  Google Scholar 

  140. Kaushik S, Kiffin R, and Cuervo A (2007). Chaperone-mediated autophagy and aging: a novel regulatory role of lipids revealed. Autophagy 3: 387–389.

    CAS  PubMed  Google Scholar 

  141. Zhang C and Cuervo AM (2008). Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14: 959–965.

    Article  CAS  PubMed  Google Scholar 

  142. McCay CM, Cromwell MF, and Maynard LA (1935). The effect of retarded growth upon the length of life and upon the ultimate body size. J Nutr 10: 63–79.

    CAS  Google Scholar 

  143. Cavallini G, Donati A, Gori Z, et al. (2001). The protection of rat liver autophagic proteolysis from the age-related decline co-varies with the duration of anti-ageing food restriction. Exp Gerontol 36: 497–506.

    Article  CAS  PubMed  Google Scholar 

  144. Bergamini E, Cavallini G, Donati A, et al. (2003). The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 53: 203–208.

    Article  CAS  Google Scholar 

  145. Wohlgemuth SE, Julian D, Akin DE, et al. (2007). Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 10: 281–292.

    Article  CAS  PubMed  Google Scholar 

  146. Johnson TE (1990). Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249: 908–912.

    Article  CAS  PubMed  Google Scholar 

  147. Kenyon C, Chang J, Gensch E, et al. (1993). C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464.

    Article  CAS  PubMed  Google Scholar 

  148. Melendez A, Talloczy Z, Seaman M, et al. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301: 1387–1391.

    Article  CAS  PubMed  Google Scholar 

  149. Jia K and Levine B (2007). Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3: 597–599.

    PubMed  Google Scholar 

  150. Tóth M, Sigmond T, Borsos E, et al. (2008). Longevity pathways converge on autophagy genes to regulate life span in caenorhabditis elegans. Autophagy 4: 330–338.

    PubMed  Google Scholar 

  151. Morck C and Pilon M (2006). C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 6: 39.

    Article  PubMed  Google Scholar 

  152. Hansen M, Chandra A, Mitic L, et al. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4: e24.

    Article  PubMed  CAS  Google Scholar 

  153. Simonsen A, Cumming R, Brech A, et al. (2007). Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4: 176–184.

    PubMed  Google Scholar 

  154. Martinez-Vicente M, Talloczy Z, Kaushik S, et al. (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118: 777–788.

    CAS  PubMed  Google Scholar 

  155. Levine B (2007). Cell biology: autophagy and cancer. Nature 446: 745–747.

    Article  CAS  PubMed  Google Scholar 

  156. Mathew R, Karantza-Wadsworth V, and White E (2007). Role of autophagy in cancer. Nat Rev Cancer 7: 961–967.

    Article  CAS  PubMed  Google Scholar 

  157. Ogier-Denis E and Codogno P (2003). Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603: 113–128.

    CAS  PubMed  Google Scholar 

  158. Schnaith A, Kashkar H, Leggio S, et al. (2006). Staphylococcus aureas subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282: 2695–2706.

    Article  PubMed  CAS  Google Scholar 

  159. Inoki K (2008). Role of TSC-mTOR pathway in diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1): S59–S62.

    Article  CAS  PubMed  Google Scholar 

  160. Lloberas N, Cruzado JM, Franquesa M, et al. (2006). Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17: 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  161. Sakaguchi M, Isono M, Isshiki K, et al. (2006). Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 340: 296–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Cuervo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Orenstein, S.J., Cuervo, A.M. (2010). Changes in Lysosomes and Their Autophagic Function in Aging: The Comparative Biology of Lysosomal Function. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_10

Download citation

Publish with us

Policies and ethics