Skip to main content

Whilst This Planet Has Gone Cycling On: What Role for Periodic Astronomical Phenomena in Large-Scale Patterns in the History of Life?

  • Chapter
Earth and Life

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

One of the longstanding debates in the history of paleontology focuses on the issue of whether or not there have been long-term cycles (operating over tens of millions of years) in biodiversity and extinction. Here we consider the history of this debate by connecting the skein from Grabau up to 2008. We focus on the evidence for periodicity that has emerged thus far, and conclude that there is indeed some evidence that periodicity may be real, though of course more work is needed. We also comment on possible causal mechanisms, focusing especially on the motion of our solar system in our galaxy. Moreover, we consider the reasons why some scientists have opposed periodicity over the years. Finally, we consider the significance of this for our understanding of evolution and the history of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrain JM, Westrop SR (2000) An empirical assessment of taxic paleobiology. Science 289:110–112

    Article  Google Scholar 

  • Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M et al (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci USA 98:6261–6266

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Anderson EJ, Goodwin PW, Sobieski TH (1984) Episodic accumulation and the origin of formation boundaries in the Helderberg Group of New York State. Geology 12:120–123

    Article  Google Scholar 

  • Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Ann Rev Earth Planet Sci 34:127–155

    Article  Google Scholar 

  • Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:11–21.

    Google Scholar 

  • Bennett KD (1997) Evolution and ecology: the pace of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Benton MJ (1996) On the nonprevalence of competitive replacement in the evolution of tetrapods. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 185–210

    Google Scholar 

  • Brett CE, Baird GC (1995) Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In: Erwin D, Anstey R (eds) Approaches to speciation in the fossil record. Columbia University Press, New York, pp 285–315

    Google Scholar 

  • Brigham FO (1988) The Fast Fourier transform and its applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Buffon GL (1749–1804) Histoire Naturelle, Générale et Particulière. Imprimerie Royale, Puis Plassan, Paris

    Google Scholar 

  • Camp CL (1952) Geological boundaries in relation to faunal changes and diastrophism. J Paleontol 26:353–358

    Google Scholar 

  • Cloud PE Jr (1948) Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution 2:3223–250

    Article  Google Scholar 

  • Cooper GA, Williams A (1952) Significance of the stratigraphic distribution of brachiopods. J Paleontol 26:326–337

    Google Scholar 

  • Cornette JL (2007) Gauss-Vanícek and Fourier transform spectral analyses of marine diversity. Comput Sci Eng 9:61–63

    Article  Google Scholar 

  • Cornette JL, Lieberman BS (2004) Random walks in the history of life. Proc Natl Acad Sci USA 101:187–191

    Article  Google Scholar 

  • Cornette JL, Lieberman BS, Goldstein RH (2002) Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc Natl Acad Sci USA 99:7832–7835

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Reprint 1st edn. Harvard University Press, Cambridge

    Google Scholar 

  • Davis M, Hut P, Muller RA (1984) Extinction of species by periodic comet showers. Nature 308:715–717

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • de Candolle AP (1820) Géographie botanique. Dict des Sci Nat 18:359–422

    Google Scholar 

  • Eldredge N (1985) Unfinished synthesis. Oxford University Press, New York

    Google Scholar 

  • Eldredge N (1999) The pattern of evolution. W. H. Freeman, New York

    Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Fischer AG (1982) Long-term climatic oscillations recorded in stratigraphy. In: Berger W (ed) Climate in earth history. National Research Council Studies in Geophysics, National Academy Press, Washington, DC, pp 97–104

    Google Scholar 

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep-water carbonate environments. Soc Econ Paleontols, Minerals Spec Pub 25: 19–50. Tulsa, Oklahoma

    Google Scholar 

  • Foote M (2006) Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345–366

    Article  Google Scholar 

  • Gies DR, Helsel JW (2005) Ice age epochs and the Sun’s path through the Galaxy. Astrophys J 626:844–848

    Article  Google Scholar 

  • Goldschmidt RB (1940) Material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ (1965) Is uniformitarianism necessary? Am J Sci 263:223–228

    Article  Google Scholar 

  • Gould SJ (1982) Introduction. In: Goldschmidt RB (ed) Material basis of evolution. Reprint edn. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ (1989) Wonderful life. WW Norton, New York

    Google Scholar 

  • Gould SJ, Calloway CB (1980) Clams and brachiopods; ships that pass in the night. Paleobiology 6:383–396

    Google Scholar 

  • Grabau AW (1934) Palaeozoic formations in the light of the pulsation theory vol. 1 Taconian and Cambrian pulsation systems, 1st edn. National University of Peking Press, China

    Google Scholar 

  • Grabau AW (1936) Palaeozoic formations in the light of the pulsation theory vol. 1 Taconian and Cambrian pulsation systems, 2nd edn. National University of Peking Press, China

    Google Scholar 

  • Grabau AW (1940) The rhythm of the ages. RE Krieger, Huntington, New York

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  Google Scholar 

  • Henbest LG (1952) Significance of evolutionary explosions for diastrophic division of earth history: introduction to the symposium. J Paleontol 26:299–318

    Google Scholar 

  • Hills JG (1984) Dynamical constraints on the mass and perihelion distance of Nemesis and the stability of its orbit. Nature 311:636–638

    Article  Google Scholar 

  • Huntley B, Webb T III (1989) Migration: species’ response to climatic variations caused by changes in the earth’s orbit. J Biogeog 16:5–19

    Article  Google Scholar 

  • Laguna P, Moody GB, Mark RG (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng 45:698–715

    Article  Google Scholar 

  • Lieberman BS (2000) Paleobiogeography. Plenum/Kluwer, New York

    Book  Google Scholar 

  • Lieberman BS, Melott AL (2007) Considering the case for biodiversity cycles: reexamining the evidence for periodicity in the fossil record. PLoS One 2(8):e759

    Article  Google Scholar 

  • Matese JJ, Whitman PG, Innanen KA, Valtonen MJ (1996) Why we study the geological record for evidence of the solar oscillation about the galactic midplane. Earth Moon Planets 72:7–12

    Article  Google Scholar 

  • Medvedev MV, Melott AL (2007) Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys J 664:879–889

    Article  Google Scholar 

  • Melott AL (2008) Long-term cycles in the history of life: periodic biodiversity in the Paleobiology Database. PLoS One 3(12):e4044

    Article  Google Scholar 

  • Melott AL, Lieberman BS, Laird CM, Martin LD, Medvedev MV, Thomas BC, Cannizzo JK, Gehrels N, Jackman CH (2004) Did a gamma-ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61

    Article  Google Scholar 

  • Moore RC (1952) Evolution rates among crinoids. J Paleontol 26:338–352

    Google Scholar 

  • Morris PJ, Ivany LC, Schopf KM, Brett CE (1995) The challenge of paleoecological stasis: reassessing sources of evolutionary stability. Proc Natl Acad Sci USA 92:11269–11273

    Article  Google Scholar 

  • Newell ND (1949) Periodicity in invertebrate evolution. Geol Soc Am Bull 60:1911

    Google Scholar 

  • Newell ND (1952) Periodicity in invertebrate paleontology. J Paleontol 26:371–385

    Google Scholar 

  • Olsen PE (1986) A 40-million-year lake record of early Mesozoic orbital climatic forcing. Science 234:842–848

    Article  Google Scholar 

  • Patterson C, Smith AB (1987) Is the periodicity of extinctions a taxonomic artefact? Nature 330:248–251

    Article  Google Scholar 

  • Peters S (2005) Geologic constraints on the macroevolutionary history of marine animals. Proc Natl Acad Sci USA 102:12326–12331

    Article  Google Scholar 

  • Rampino M, Stothers RB (1984) Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature 308:709–712

    Article  Google Scholar 

  • Raup DM (1986) The nemesis affair. W. W. Norton, New York

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci USA 81:801–805

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1986) Periodic extinction of families and genera. Science 231:833–836

    Article  Google Scholar 

  • Rohde RA (2006) 62 million year cycle in biodiversity and associated geological changes. Geol Soc Am Ann Meet Abstr Progr 63–67

    Google Scholar 

  • Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210

    Article  Google Scholar 

  • Ross RM, Allmon WD (1990) Causes of evolution: a paleontological perspective. University of Chicago, Chicago

    Google Scholar 

  • Rothman DH (2001) Atmospheric carbon dioxide levels for the last 500 million years. Proc Natl Acad Sci USA 98:4305–4310

    Article  Google Scholar 

  • Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Sepkoski JJ Jr (1989) Periodicity in extinction and the problem of catastrophism in the history of life. J Geol Soc 146:7–19

    Article  Google Scholar 

  • Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363:1–560

    Google Scholar 

  • Sepkoski JJ Jr, Raup DM (1986) Periodicity in marine extinction events. In: Elliott DK (ed) Dynamics of extinction. Wiley, New York

    Google Scholar 

  • Simpson GG (1952) Periodicity in vertebrate evolution. J Paleontol 26:359–370

    Google Scholar 

  • Stanley SM (1990) Delayed recovery and the spacing of major extinctions. Paleobiology 16:401–414

    Google Scholar 

  • Stigler SM, Wagner MJ (1987) A substantial bias in nonparametric tests for periodicity in geophysical data. Science 238:940–945

    Article  Google Scholar 

  • Valentine JW, Moores EM (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:659–677

    Article  Google Scholar 

  • Van Dam JA, Azia HA, Sierra MAA, Hilgen FJ, van den Hoek Ostende LW, Lourens LJ, Mein P, van der Meulen AJ, Pelaez-Campomanes P (2006) Long-period astronomical forcing of mammal turnover. Nature 443:687–691

    Article  Google Scholar 

  • Vermeij GJ (1993) Evolution and escalation. Princeton University Press, Princeton

    Google Scholar 

  • Von Humboldt A (1816) On the laws observed in the distribution of vegetable forms. Phil Mag J 47:446

    Google Scholar 

  • Vrba ES (1980) Evolution, species and fossils: how does life evolve? S Afr J Sci 76:61

    Google Scholar 

  • Vrba ES (1985) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236

    Google Scholar 

  • Vrba ES (1992) Mammals as a key to evolutionary theory. J Mammal 73:1–28

    Article  Google Scholar 

  • Whitmire DP, Jackson AA (1984) Are periodic mass extinctions driven by a distant solar companion? Nature 308:713–715

    Article  Google Scholar 

Download references

Acknowledgements

We thank NSF DEB-0716162 (to BSL) for support of this research and N. Eldredge and M. Medvedev for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Lieberman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lieberman, B.S., Melott, A.L. (2012). Whilst This Planet Has Gone Cycling On: What Role for Periodic Astronomical Phenomena in Large-Scale Patterns in the History of Life?. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_3

Download citation

Publish with us

Policies and ethics