Skip to main content

Isotope Geochemistry and Plankton Response to the Ireviken (Earliest Wenlock) and Cyrtograptus lundgreni Extinction Events, Cape Phillips Formation, Arctic Canada

  • Chapter

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

Several Canadian Arctic Silurian stratigraphic sections from the basinal facies of Cape Phillips Formation have been sampled across the Llandovery–Wenlock and early–late Homerian (late Wenlock) boundary intervals for integration of biotal (graptolite, radiolarian, palynomorph) and geochemical (13C) data for two well-known extinction events, the Ireviken and lundgreni Extinction (LEE) events. Graptolites, abundant and well preserved, provide a refined biostratigraphic base for other paleontologic and geochemical data. They were globally affected by both extinction events: about 64% reduction for the Ireviken and 90–95% for the LEE. Recovery from the LEE event was slow and diversity low through the late Homerian. Radiolarians—diverse (28 species), abundant, and beautifully preserved through the early Homerian―are sharply reduced slightly below the LEE boundary. Data for the late Homerian are more scattered, but it appears that diversity was low; few early Homerian taxa crossed the extinction boundary and new taxa appeared. Palynological studies around the LEE interval are at a preliminary level, but it appears that chitinozoans and microflora (acanthomorph acritarchs, prasinophytes, sphaeromorphs) were impacted by the extinction event. Chitinozoans, though seldom abundant, appear to disappear briefly across the LEE boundary, as do palynomorphs. Amorphous organic matter is abundant in the upper part of the lundgreni Zone; it is much less common in the early and middle–late Homerian and common in the latest part. Stable isotope geochemistry shows well-marked, positive excursions in the δ13Corganic fraction associated with the Ireviken event and LEE. The Ireviken excursion (C1) curve has a sharp base, reaches a peak in the early Wenlock, and then tapers more slowly. The LEE excursion (C4) peaks at, or slightly below, the early–late Homerian boundary. Both are positive excursions. Considering the limits of biostratigraphic placement of the boundaries, they were close to or coincident with regressions, particularly across the LEE interval. The δ13Corganic excursions are greater for inshore sections compared with the offshore section. The most parsimonious explanation for increased carbon content is accelerated weathering of carbonates exposed during a lowstand.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrain JM (2000) Regional Silurian trilobite turnover coincident with graptolite mass extinction. Geological Society of America, 2000 annual meeting, Abstracts With Programs 32:367

    Google Scholar 

  • Adrain JM, Edgecombe GD (1997) Silurian (Wenlock) calymenid trilobites from the Cape Phillips Formation, central Canadian Arctic. J Paleontol 71:237–261

    Google Scholar 

  • Andrew AS, Hamilton PJ, Mawson R, Talent JA, Whitford DJ (1994) Isotopic correlation tools in the mid-Palaelozoic and their relation to extinction events. Aust Pet Explor Assoc J 34:268–277

    Google Scholar 

  • Azmy K, Veizer J, Basset MG, Copper P (1998) Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval seawater and glaciations. Geol Soc Am Bull 110:1499–1512

    Article  Google Scholar 

  • Baarli BG, Johnson ME, Antoshkina A (2003) Silurian stratigraphy and palaelogeography of Baltica. In: Landing E, Johnson ME (eds) Silurian lands and seas: palaelogeography outside of Laurentia. New York State Museum Bull 493:3–34

    Google Scholar 

  • Barrick JE (1997) Wenlock (Silurian) depositional sequences, eustatic events, and biotic change on the southern shelf of North America. In: Klapper G, Murphy MA, Talent JA (eds) Palaelozoic sequence stratigraphy, biostratigraphy, and biogeography: studies in honor of J. Granville (“Jess”) Johnson. Geol Soc Amer Spec Pap 321:47–65

    Google Scholar 

  • Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Palaeoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta 61:2717–2730

    Article  Google Scholar 

  • Calner M, Säll E (1999) Transgressive oolites onlapping a Silurian rocky shoreline unconformity. Geologiska Föreningens I Stockholm Förhandlinger 121:91–100

    Google Scholar 

  • Calner M, Jeppsson L, Munnecke A (2004) The Silurian of Gotland – Part I: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger geologische Abhandlungen – Sonderland 5:113–131

    Google Scholar 

  • Caputo MV (1998) Ordovician–Silurian glaciations and global sea-level changes. In: Landing E, ME Johnson (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:15–25

    Google Scholar 

  • Chatterton BDE, Edgecombe GD, Tuffnell PA (1990) Extinction and migration in Silurian trilobites and conodonts of northwestern Canada. J Geol Soc (London) 147:703–715

    Article  Google Scholar 

  • Coniglio M, Melchin MJ (1995) Petrography and isotope geochemistry of diagenetic carbonates in the lower Cape Phillips Formation, Cornwallis Island, Arctic Archipelago, Canada. Bull Canadian Petrol Geol 43:251–266

    Google Scholar 

  • Corfield RM, Siveter DJ, Cartlidge JE, McKerrow WS (1992) Carbon isotope excursion near the Wenlock–Ludlow (Silurian) boundary in the Anglo–Welsh area. Geology 20:371–374

    Article  Google Scholar 

  • Cramer BD, Saltzman MR (2005) Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive isotope excursion. Palaeogeogr Palaeoclimatol Palaeoecol 219:333–349

    Article  Google Scholar 

  • Cramer BD, Saltzman MR (2006) Fluctuations in epeiric sea carbonate production during Silurian positive isotope excursions: a review of proposed palaeoceanographic models. Palaeogeogr Palaeoclimatol Palaeoecol 245:37–46

    Article  Google Scholar 

  • De Freitas TA, Nowlan GA (1998) A new, major Silurian reef tract and overview of regional Silurian reef development, Canadian Arctic and north Greenland. Bull Can Petrol Geol 48:327–249

    Google Scholar 

  • De Freitas TA, Trettin HP, Dixon OA, Mallamo M (1999) Silurian system of the Canadian Arctic Archipelago. Bull Can Petrol Geol 47:136–193

    Google Scholar 

  • Diaz-Martinez E (1997) Latest Ordovician–Early Silurian glaciation and carbonate deposition in the Bolivian Central Andes. V Reunión International del Proyecto 351 del PICG, La Coruña, Libro de Resúmenes y Excursiones, pp 51–53

    Google Scholar 

  • Diaz-Martinez E (1998) Silurian of Peru and Bolivia: recent advances and future research. Temas Geologico–Mineros ITGE 23:69–75

    Google Scholar 

  • Diaz-Martinez E, Grahn Y (2007) Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia, and northern Argentina): Palaeoecologic and geodynamic setting. Palaeogeogr Palaeoclimatol Palaeoecol 245:62–81

    Article  Google Scholar 

  • Gelsthorpe DN (2004) Microplankton changes through the early Silurian Ireviken extinction event on Gotland, Sweden. Rev Palaeobot Palynol 130:89–203

    Article  Google Scholar 

  • Goodbody QH (1981) Silurian Radiolaria from the Cape Phillips formation, Canadian Arctic Archipelago. Unpublished MSc thesis, University of Alberta, Edmonton, Alberta, Canada, 388 pp

    Google Scholar 

  • Goodbody QH (1982) Silurian Radiolaria from the Cape Phillips formation, Canadian Arctic Archipelago. Proceedings of the Third North American Palaelontological Convention, vol 1, pp 211–216

    Google Scholar 

  • Goodbody QH (1986) Wenlock Palaeoscenidiidae and Entactiniidae (Radiolaria) from the Cape Phillips formation of the Canadian Arctic Archipelago. Micropalaelontology 32:129–157

    Article  Google Scholar 

  • Grahn Y, Caputo MV (1992) Early Silurian glaciations in Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 99:9–15

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Heath RJ, Brenchley PJ, Marshall JD (1998) Early Silurian carbon and oxygen stable-isotope stratigraphy of Estonia: implications for climate change. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:313–323

    Google Scholar 

  • Holdsworth BK (1977) Palaeozoic Radiolaria: stratigraphic distribution in Atlantic borderlands. In: Swain FM (ed) Stratigraphic micropalaelontology of Atlantic Basin and Borderlands. Elsevier, Amsterdam, pp 167–184

    Chapter  Google Scholar 

  • Holmden C, Creaser RA, Muehlenbachs K, Leslie SA, Bergström SM (1998) Isotopic evidence for geochemical decoupling between ancient Epeiric seas and bordering oceans: implications for secular curves. Geology 26:567–570

    Article  Google Scholar 

  • Immenhauser A, Kenter JAM, Gansse G, Bahamonde JR, Vliet VA, Saher MH (2002) Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain). J Sed Res 72:82–94

    Article  Google Scholar 

  • Immenhauser A, Porta DG, Kenter JAM, Bahamonde JR (2003) An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50:1–7

    Article  Google Scholar 

  • Jaeger H (1991) Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow–Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 182:303–354

    Google Scholar 

  • Jeppsson L (1987) Lithological and conodont distributional evidence for episodes of anomalous oceanic conditions during the Silurian. In: Aldridge RJ (ed) Palaeobiology of conodonts. Ellis Horwood, Chichester, pp 129–145

    Google Scholar 

  • Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc London 147:663–374

    Article  Google Scholar 

  • Jeppsson L (1997) The anatomy of the mid–early Silurian Ireviken event and a scenario for P–S events. In: Brett CE, Baird GC (eds) Palaelontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York, pp 451–492

    Google Scholar 

  • Jeppsson L (1998) Silurian oceanic events: summary of general characteristics. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:239–257

    Google Scholar 

  • Johnson ME (1996) Stable cratonic sequences and a standard for Silurian eustacy. In: Witzke BJ, Ludvigson GA, Day JE (eds) Palaelozoic sequence stratigraphy: views from the North American craton. Geol Soc Am Spec Pap 306:203–311

    Google Scholar 

  • Johnson ME, McKerrow WS (1991) Sea level and faunal changes during the latest Llandovery and earliest Ludlow (Silurian). Hist Biol 5:153–169

    Article  Google Scholar 

  • Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF Geol Soc Sweden 128:123–129

    Google Scholar 

  • Kaljo D, Boucot AJ, Corfield RM, Leherissé A, Koren TN, Kříž, J, Männik T, Nestor V, Shaver RH, Siveter DJ, Viira V (1995) Silurian bio-events. In: Walliser OH (ed) Global events and event stratigraphy in the phanerozoic. Springer, Berlin, pp 173–224

    Google Scholar 

  • Kaljo D, Kiipli T, Martma T (1997) Carbon Isotope event markers through the Wenlock–Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr, Palaeoclimatol, Palaeoecol 132:211–223

    Article  Google Scholar 

  • Kaljo D, Kiipli T, Martma T (1998) Correlation of carbon isotope events and environmental cyclicity in the east Baltic Silurian. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic, and tectonic changes. New York State Mus Bull 491:297–312

    Google Scholar 

  • Kaljo D, Martma T, Mannik P, Viira V (2003) Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Societé géologique de France 174:59–66

    Article  Google Scholar 

  • Kleffner MA, Cramer BD, Saltzman MM (2005) First documentation of early Wenlock Ireviken positive delta (super 13) C (sub CARB) excursion in the type area of the Niagaran provincial series; Irondequoit Limestone, Rochester Shale, Decew Dolomite, Gasport Dolomite, and Goat Island Dolomite are all Sheinwoodian (early Wenlock) in age. Abstr Prog Geol Soc Am 37:79

    Google Scholar 

  • Koren TN (1991) The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proc Estonian Acad Sci Geology 40:74–78

    Google Scholar 

  • Koren TN, Lenz AC, Loydell DK, Melchin MJ, Štorch P, Teller L (1996) Generalized graptolite zonal sequence defining Silurian time intervals for global palaelogeographic studies. Lethaia 29:59–60

    Article  Google Scholar 

  • Kozłowska-Dawidziuk A, Lenz AC, Štorch P (2001) Upper Wenlock and Lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. J Paleontol 75:147–164

    Article  Google Scholar 

  • Kříž J, Degardin JM, Ferretti A, Hansch W, Gutiérrez Marco JC, Paris F, Piçarra JM, Robardet M, Schönlaub H-P, Serpagli E (2003) Silurian stratigraphy and palaelogeography of Gondwanan and Perunican Europe. In: Landing E, Johnson ME (eds) Silurian lands and seas: palaelogeography outside of Laurentia. New York State Mus Bull 493:105–179

    Google Scholar 

  • Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 152:173–187

    Article  Google Scholar 

  • Lenz AC (1993a) Late Wenlock–Ludlow (Silurian) graptolite extinction, evolution, and biostratigraphy: perspectives from Arctic Canada. Can J Earth Sci 30:491–498

    Article  Google Scholar 

  • Lenz AC (1993b) Upper Wenlock and Ludlow (Silurian) Plectograptinae (retiolitid graptolites), Cape Phillips formation, Arctic Canada. Bull Am Paleont 104:1–54

    Google Scholar 

  • Lenz AC (1994) New upper Homerian (uppermost Wenlock, Silurian) monograptids from Arctic Canada. Can J Earth Sci 31:1779–1784

    Article  Google Scholar 

  • Lenz AC (1995) Upper Homerian (Wenlock, Silurian) graptolites and graptolite biostratigraphy, Arctic Archipelago, Canada. Can J Earth Sci 32:1378–1392

    Article  Google Scholar 

  • Lenz AC (2001) Upper Wenlock (Silurian) graptolites of Arctic Canada: pre-extinction, lundgreni Biozone fauna. Palaeontographica Canadiana 20:61 pp

    Google Scholar 

  • Lenz AC (2002) Late Wenlock and early Ludlow graptolite extinction, evolution, and diversification: a reassessment. Palaeont Assoc Spec Papers 67:171–183

    Google Scholar 

  • Lenz AC (2004) Ludlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada. NRC Research Press Ottawa, Ontario, Canada, 141 pp

    Google Scholar 

  • Lenz AC, Kozłowska A (2006) Graptolites from the lundgreni Biozone (lower Homerian, Silurian), Arctic Islands, Canada: new species and supplementary material. J Paleontol 80:616–637

    Article  Google Scholar 

  • Lenz AC, Kozłowska-Dawidziuk A (2001) Evolutionary developments in the Silurian Retiolitidae (Graptolites). J Czech Geol Surv 46:227–238

    Google Scholar 

  • Lenz AC, Kozłowska-Dawidziuk A (2004) Ludlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada. NRC Research Press, Ottawa, Canada, 141 pp

    Google Scholar 

  • Lenz AC, Melchin MJ (1991) Wenlock (Silurian) graptolites, Cape Phillips formation, Canadian Arctic islands. Trans Roy Soc Edinburgh Earth Sci 82:211–237

    Article  Google Scholar 

  • Lenz AC, Noble PJ, Masiak M, Poulson SR, Kozłowska A (2006) The lundgreni extinction event: integration of palaelontological and geochemical data from Arctic Canada. GFF Geol Soc Sweden 128:153–158

    Google Scholar 

  • Loydell DK (1998) Early Silurian sea-level changes. Geol Mag 135:447–471

    Article  Google Scholar 

  • Loydell DK (2007a) Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes, and extinction events. Geol J 42:531–546

    Article  Google Scholar 

  • Loydell AJ (2007b) Carbon isotope stratigraphy of the upper Telychian and lower Sheinwoodian (Llandovery–Wenlock, Silurian) of the Banwy River section, Wales. Geol Mag 144:1015–1019

    Google Scholar 

  • Loydell DK, Mannik P, Nestor P (2003) Integrated biostratigraphy of the Lower Silurian of the Aizpute-41 Core, Latvia. Geol Mag 140:205–229

    Article  Google Scholar 

  • Macdonald EW (1998) Llandovery Secuicollactinae and Rotasphaeridae (Radiolaria) from the Cape Phillips formation, Cornwallis Island, Arctic Canada. J Paleontol 72: 585–604

    Google Scholar 

  • Macdonald EW (2000) Radiolaria from the lower Silurian of the Cape Phillips Formation, Arctic Canada. Program with Abstracts Ninth Meeting International Association of Radiolarian Palaelontologists, Blairsden, CA, pp 1–48

    Google Scholar 

  • Macdonald EW (2003) Radiolaria from the lower Silurian of the Cape Phillips formation, Cornwallis Island, Nunavut, Canada. PhD Dissertation, Dalhousie University, Halifax, Nova Scotia, 370 pp

    Google Scholar 

  • Macdonald EW (2006) A preliminary radiolarian biozonation for the lower Silurian of the Cape Phillips formation, Nunavut, Canada. Can J Earth Sci 43:205–211

    Article  Google Scholar 

  • Märss T, Caldwell M, Gagnier P, Goujet D, Männik P, Martma T, Wilson M (1998) Distribution of Silurian and Lower Devonian vertebrate microremains and conodonts in the Baillie–Hamilton and Cornwallis Island sections, Canadian Arctic. Proc Estonian Acad Sci Geol 47:51–76

    Google Scholar 

  • Melchin MJ (1989) Llandovery graptolite biostratigraphy and palaelobiogeography, Cape Phillips formation, Canadian Arctic Islands. Can J Earth Sci 26:1726–1746

    Article  Google Scholar 

  • Melchin MJ (1994) Graptolite extinction at the Llandovery–Wenlock boundary. Lethaia 27:285–290

    Article  Google Scholar 

  • Melchin MJ, Holmden C (2006) Carbon isotope chemostratigraphy in Arctic Canada: sea level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeogr Palaeoclimatol Palaeoecol 234: 186–200

    Article  Google Scholar 

  • Melchin MJ, Koren TN, Štorch P (1998) Global diversity and survivorship patterns of Silurian graptoloids. In: Landing E, Johnson ME (eds) Silurian cycles. New York State Mus Bull 493:165–182

    Google Scholar 

  • Melchin MJ, Heath RJ, Jowett DMS, Senior SJH, Barnes CR, Marshall JD (2000) Correlation of the graptolite and conodonts zonations and carbon isotope signal through the late Llandovery and early Wenlock, Cornwallis Island, Arctic Canada. Palaeontology Down Under 2000, Geol Soc Australia Abs 61:64–65

    Google Scholar 

  • Mikulic DG, Kluessendorf J (1999) Stasis and extinction of Silurian (LLandovery–Wenlock) trilobite associations related to oceanic cyclicity. J Paleontol 73: 320–325

    Google Scholar 

  • Munnecke A, Samtleben C, Bickert T (2003) The Ireviken event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124

    Article  Google Scholar 

  • Nestor V (1997) Reflection of Wenlock oceanic episodes and events on the chitinozoan succession of Estonia. Eesti Teaduste Akadeemia Toimetised, Geoloogia 46(3): 119–126

    Google Scholar 

  • Nestor V, Einasto R, Loydell DK (2002) Chitinozoan biostratigraphy and lithological characteristics of the Lower and Upper Visby boundary beds in the Ireviken 3 section, northwest Gotland. Eesti Teaduste Akadeemia Toimetised, Geoloogia 51(4):215–226

    Google Scholar 

  • Noble PJ, Lenz AC (2007) Upper Wenlock Ceratoikiscidae (Radiolaria) from the Cape Phillips Formation, Arctic Canada. J Paleontol 81:1044–1052

    Article  Google Scholar 

  • Noble PJ, Zimmerman MK, Holmden C, Lenz AC (2005) Early Silurian (Wenlockian) δ13C profiles from the Cape Phillips formation, Arctic Canada and its relation to biotic events. Can J Earth Sci 42:1419–1430

    Article  Google Scholar 

  • Panchuk KM, Holmden C, Leslie S (2005a) Local controls on carbon cycling in the Midcontinent region of North America with implications for carbon isotope secular curves. J Sed Res 76:200–211

    Article  Google Scholar 

  • Panchuk KM, Holmden C, Kump LR (2005b) Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: tales from the Mohawkian Sea. Palaeogeogr, Palaeoclimatol, Palaeoecol 228:320–337

    Article  Google Scholar 

  • Porębska A, Kozlowska-Dawidzuik A, Masiak M (2004) The lundgreni event in the Silurian East European platform, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213: 271–294

    Google Scholar 

  • Renz GW (1988) Silurian Radiolaria of the genus Ceratoikiscum from the Canadian Arctic. Micropalaelontology 34:260–267

    Article  Google Scholar 

  • Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674

    Article  Google Scholar 

  • Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow–marine environment. Facies 43:1–38

    Article  Google Scholar 

  • Senior SJH (2005) Silurian graptolites of the genus Cyrtograptus from the Cape Phillips formation, Canadian Arctic Archipelago, Nunavut. University of Western Ontario, London, Canada, 307 pp, unpublished PhD thesis

    Google Scholar 

  • Štorch P (1995) Biotic crises and post-crisis recoveries recorded by Silurian planktonic graptolite faunas of the Barrandian area (Czech Republic). GeoLines (Praha) 3:59–70

    Google Scholar 

  • Talent JA, Mawson R, Andrew AS, Hamilton PJ, Whitford DJ (1993) Middle Palaelozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol 104:139–152

    Article  Google Scholar 

  • Thorsteinsson R (1959) Cornwallis and Little Cornwallis Islands, district of Franklin, Northwest Territories. Geol Surv Canada, Mem 294:133 pp

    Google Scholar 

  • Trettin HP (1989) The Arctic Islands. In: Bally AW, Palmer AR (eds) The geology of North America. Decade of North American Geology A, pp 349–370

    Google Scholar 

  • Wenzel B, Joachimski MM (1996) Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:143–166

    Article  Google Scholar 

  • Zimmerman MK (2001) Stable isotope and elemental geochemistry of early Silurian (Wenlockian) bio-events: Cape Phillips formation, Arctic Canada. University of Nevada Reno, Geological Sciences, unpublished MSc thesis

    Google Scholar 

Download references

Acknowledgments

This project was funded by National Science Foundation grants EAR 9870431, 9972845, and 0107139; logistical support was provided by the Polar Continental Shelf Project. M Desilets and B Peccoraro assisted with X-ray diffraction analysis; A Soufiane provided preliminary palynomorph data for the 1998 field collections at Abbott River and Twilight Creek; M. Jones and C Stott assisted in the field; funding for ACL was provided through a Natural Sciences and Engineering Research Council research grant (Canada); and partial funding for MKZ came from Geological Society of America Grants-in-aid. We sincerely thank John Talent for inviting us to contribute to this volume and are grateful to reviewers Michael Melchin, Art Boucot, and Lennart Jeppsson for constructive criticism of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Noble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Noble, P.J. et al. (2012). Isotope Geochemistry and Plankton Response to the Ireviken (Earliest Wenlock) and Cyrtograptus lundgreni Extinction Events, Cape Phillips Formation, Arctic Canada. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_20

Download citation

Publish with us

Policies and ethics