Skip to main content

Directing Differentiation of Embryonic Stem Cells into Distinct Neuronal Subtypes

  • Chapter
  • First Online:
Perspectives of Stem Cells

Abstract

There is great interest in testing the efficacy of treating neurodegenerative diseases using embryonic stem cell derivatives. A first step towards this goal is demonstrating that embryonic stem cells can produce, in culture, the specific cell types lost in the various diseases. We describe here currently used approaches for generating neural stem cells, as well as specific neuronal subtypes, from mouse and human embryonic stem cells. Based upon their demonstrated role in neurodegenerative disease and the reports documenting their derivation from embryonic stem cells, we focus on dopaminergic neurons, GABAergic interneurons, spinal cord motor neurons, serotonergic neurons, and basal forebrain cholinergic neurons. Protocols are all based upon what has been learned about the conditions that promote emergence of these lineages in the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine (serotonin)

AA:

ascorbic acid

AADC:

amino acid decarboxylase

ACh:

acetylcholine

AD:

Alzheimer’s disease

ALS:

Amyotrophic Lateral Sclerosis

BAC:

bacterial artificial chromosome

BDNF:

brain derived neurotrophic factor

BMP:

bone morphogenic protein

cAMP:

cyclic adenosine monophosphate

CB:

calbindin

CCK:

cholecystokinin

CGE:

caudal ganglionic eminences

CNS:

central nervous system

CR:

calretinin

DA:

dopaminergic

DV:

dorsal-ventral

EGF:

epidermal growth factor

EPL:

primitive ectoderm-like

ESC:

embryonic stem cell(s)

FACS:

fluorescence activated cell sorting

FGF:

fibroblast growth factor

GABA:

γ-aminobutyric acid

GAD:

glutamic acid decarboxylase

GDNF:

glial cell derived neurotrophic factor

Glu:

glutamate

hESC:

human embryonic stem cell(s)

Hh:

hedgehog

iPS:

induced pluripotent stem cell

MAP2:

microtubule associated protein 2

mDA:

midbrain dopaminergic

mES cells:

mouse embryonic stem cells

MGE:

medial ganglionic eminences

MN:

motor neuron(s)

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahycopyridine

NGF:

nerve growth factor

NPY:

neuropeptide Y

NSC:

neural stem cell(s)

NT-4:

neurotrophin 4

PD:

Parkinson’s disease

PDD:

Parkinsonian disease dementia

pMN:

motor neuron progenitor(s)

PV:

parvalbumin

RA:

retinoic acid

SCI:

spinal cord injuries

Shh:

sonic hedgehog

SMA:

Spinal Muscular Atrophy

SNi:

substantia nigra

SSRI:

serotonin selective reuptake inhibitors

SST:

somatostatin

TGF-β:

transforming growth factor β

TH:

tyrosine hydroxylase

TLE:

temporal lobe epilepsy

VIP:

vasoactive intestinal peptide

VMAT2:

vesicular monoamine transporter 2

References

  • Abeliovich A, Hammond R (2007) Midbrain dopamine neuron differentiation: factors and fates. Dev Biol 304: 447–454.

    CAS  PubMed  Google Scholar 

  • Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437: 894–897.

    CAS  PubMed  Google Scholar 

  • Anderson RM, Lawrence AR, Stottmann RW, Bachiller D, Klingensmith J (2002) Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129: 4975–4987.

    CAS  PubMed  Google Scholar 

  • Anderson S, Mione M, Yun K, Rubenstein JL (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneurogenesis. Cereb Cortex 9: 646–654.

    CAS  PubMed  Google Scholar 

  • Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124: 393–405.

    CAS  PubMed  Google Scholar 

  • Aoto K, Nishimura T, Eto K, Motoyama J (2002) Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol 251: 320–332.

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Nixon R (2008) Dystrophic serotonergic axons in neurodegenerative diseases. Brain Res 1217: 185–194.

    CAS  PubMed  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168: 342–357.

    CAS  PubMed  Google Scholar 

  • Baker JC, Beddington RS, Harland RM (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13: 3149–3159.

    CAS  PubMed  Google Scholar 

  • Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MAS, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21: 1200–1206.

    CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25: 1–27.

    CAS  PubMed  Google Scholar 

  • Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 7: 1003–1009.

    CAS  PubMed  Google Scholar 

  • Boillee S, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and ther nonneuronal neighbors. Neuron 52: 39–59.

    CAS  PubMed  Google Scholar 

  • Briscoe J, Ericson J (1999) The specification of neuronal identity by graded sonic hedgehog signalling. Semin Cell Dev Biol 10: 353–362.

    CAS  PubMed  Google Scholar 

  • Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11: 43–49.

    CAS  PubMed  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101: 435–445.

    CAS  PubMed  Google Scholar 

  • Brustle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RD (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci U S A 94: 14809–14814.

    CAS  PubMed  Google Scholar 

  • Cai C, Grabel L (2007) Directing the differentiation of embryonic stem cells to neural stem cells. Dev Dyn 236: 3255–3266.

    CAS  PubMed  Google Scholar 

  • Calza L, Giuliani A, Fernandez M, Pirondi S, D’Intino G, Aloe L, Giardino L (2003) Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proc Natl Acad Sci U S A 100: 7325–7330.

    CAS  PubMed  Google Scholar 

  • Carpentino JE, Hartman NW, Grabel LB, Naegele JR (2008) Region-specific differentiation of embryonic stem cell-derived neural progenitor transplants into the adult mouse hippocampus following seizures. J Neurosci Res 86: 512–524.

    CAS  PubMed  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 100: 12747–12752.

    CAS  PubMed  Google Scholar 

  • Cazorla P, Smidt MP, O’Malley KL, Burbach JP (2000) A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 74: 1829–1837.

    CAS  PubMed  Google Scholar 

  • Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, et al. (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7: 510–517.

    CAS  PubMed  Google Scholar 

  • Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q (2005) Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8: 1510–1515.

    CAS  PubMed  Google Scholar 

  • Chu K, Kim M, Jung KH, Jeon D, Lee ST, Kim J, Jeong SW, Kim SU, Lee SK, Shin HS et al. (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023: 213–221.

    CAS  PubMed  Google Scholar 

  • Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16: 1829–1838.

    PubMed  Google Scholar 

  • Clelland CD, Barker RA, Watts C (2008) Cell therapy in Huntington disease. Neurosurg Focus 24: E9.

    PubMed  Google Scholar 

  • Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A (2004) Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131: 1165–1173.

    CAS  PubMed  Google Scholar 

  • Danglot L, Triller A, Marty S (2006) The development of hippocampal interneurons in rodents. Hippocampus 16: 1032–1060.

    CAS  PubMed  Google Scholar 

  • De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20: 285–308.

    PubMed  Google Scholar 

  • Deacon T, Dinsmore J, Costantini LC, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149: 28–41.

    CAS  PubMed  Google Scholar 

  • Deshpande DM, Kim Y-S, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, et al. (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60: 32–44.

    CAS  PubMed  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218–1221.

    CAS  PubMed  Google Scholar 

  • Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6: 933–938.

    CAS  PubMed  Google Scholar 

  • Doudet D, Gross C, Lebrun-Grandie P, Bioulac B (1985) MPTP primate model of Parkinson’s disease: a mechanographic and electromyographic study. Brain Res 335: 194–199.

    CAS  PubMed  Google Scholar 

  • Du T, Xu Q, Ocbina PJ, Anderson SA (2008) Nkx2.1 specifies cortical interneuron fate by activating Lhx6. Development 135: 1559–1567.

    CAS  PubMed  Google Scholar 

  • Ericson J, Muhr J, Placzek M, Lints T, Jessell T, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81: 747–756.

    CAS  PubMed  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, Heyningen Vv, Jessell T, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90: 169–180.

    CAS  PubMed  Google Scholar 

  • Farlow MR, Cummings J (2008) A modern hypothesis: the distinct pathologies of dementia associated with Parkinson’s disease versus Alzheimer’s disease. Dement Geriatr Cogn Disord 25: 301–308.

    PubMed  Google Scholar 

  • Fragkouli A, Hearn C, Errington M, Cooke S, Grigoriou M, Bliss T, Stylianopoulou F, Pachnis V (2005) Loss of forebrain cholinergic neurons and impairment in spatial learning and memory in LHX7-deficient mice. Eur J Neurosci 21: 2923–2938.

    PubMed  Google Scholar 

  • Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, et al. (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97: 13877–13882.

    CAS  PubMed  Google Scholar 

  • Freeman TB, Sanberg PR, Isacson O (1995) Development of the human striatum: implications for fetal striatal transplantation in the treatment of Hungtington’s disease. Cell Transplant 4: 539–545.

    CAS  PubMed  Google Scholar 

  • Freund T, Buzsaki G (1996) Interneurons of the Hippocampus. Hippocampus 6: 347–470.

    CAS  PubMed  Google Scholar 

  • Geeta R, Ramnath RL, Rao HS, Chandra V (2008) One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem Biophys Res Commun 373: 258–264.

    CAS  PubMed  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27: 2803–2820.

    PubMed  Google Scholar 

  • Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132: 5461–5469.

    CAS  PubMed  Google Scholar 

  • Gottlieb DI (2002) Large-scale sources of neural stem cells. Annu Rev Neurosci 25: 381–407.

    CAS  PubMed  Google Scholar 

  • Gruen L, Grabel L (2006) Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells 24: 2162–2169.

    PubMed  Google Scholar 

  • Guan K, Chang H, Rolletschek A, Wobus AM (2001) Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res 305: 171–176.

    CAS  PubMed  Google Scholar 

  • Gulacsi A, Anderson SA (2006) Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex 16: i89–i95.

    PubMed  Google Scholar 

  • Hantraye P, Riche D, Maziere M, Isacson O (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc Natl Acad Sci U S A 89: 4187–4191.

    CAS  PubMed  Google Scholar 

  • Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, Backovic S, Rothstein JD, Kerr DA (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A 101: 7123–7128.

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23: 6315–6326.

    CAS  PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty AK (2008) Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 212: 468–481.

    CAS  PubMed  Google Scholar 

  • Hedlund E, Hefferan MP, Marsala M, Isacson O (2007) Cell therapy and stem cells in animal models of motor neuron disorders. Eur J Neurosci 26: 1721–1737.

    PubMed  Google Scholar 

  • Hedlund E, Pruszak J, Lardaro T, Ludwig W, Vinuela A, Kim KS, Isacson O (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 26: 1526–1536.

    CAS  PubMed  Google Scholar 

  • Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13: 42–49.

    CAS  PubMed  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37: 233–247.

    CAS  PubMed  Google Scholar 

  • Isacson O, Dunnett SB, Bjorklund A (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci U S A 83: 2728–2732.

    CAS  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20–29.

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40.

    CAS  PubMed  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19: 1129–1155.

    CAS  PubMed  Google Scholar 

  • Kendall AL, Rayment FD, Torres EM, Baker HF, Ridley RM, Dunnett SB (1998) Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat Med 4: 727–729.

    CAS  PubMed  Google Scholar 

  • Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K, Hefti F (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A 88: 961–965.

    CAS  PubMed  Google Scholar 

  • Kumar M, Kaushalya SK, Gressens P, Maiti S, Mani S (2008) Optimized derivation and functional characterization of 5-HT neurons from human embryonic stem cells. Stem Cells Dev.

    Google Scholar 

  • Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrison NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25: 1931–1939.

    CAS  PubMed  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18: 675–679.

    CAS  PubMed  Google Scholar 

  • Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23: 215–221.

    PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, et al. (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437: 1370–1375.

    CAS  PubMed  Google Scholar 

  • Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007) Lhx6 activity is required for the neuronal migration and specification of cortical interneuron subtypes. J Neurosci 27: 3078–3089.

    CAS  PubMed  Google Scholar 

  • Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371: 2120–2133.

    PubMed  Google Scholar 

  • Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, et al. (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39: 937–950.

    CAS  PubMed  Google Scholar 

  • Magloczky Z, Wittner L, Borhegyi Z, Halasz P, Vajda J, Czirjak S, Freund T (2000) Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96: 7–25.

    CAS  PubMed  Google Scholar 

  • Marin F, Herrero MT, Vyas S, Puelles L (2005) Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric pattern and novel positive regions. Dev Dyn 234: 709–717.

    CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5: 793–807.

    CAS  PubMed  Google Scholar 

  • Martin GR, Wiley LM, Damjanov I (1977) The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev Biol 61: 230–244.

    CAS  PubMed  Google Scholar 

  • Marutle A, Ohmitsu M, Nilbratt M, Greig NH, Nordberg A, Sugaya K (2007) Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc Natl Acad Sci U S A 104: 12506–12511.

    CAS  PubMed  Google Scholar 

  • Maye P, Becker S, Siemen H, Thorne J, Byrd N, Carpentino J, Grabel L (2004) Hedgehog signaling is required for the differentiation of ES cells into neurectoderm. Dev Biol 265: 276–290.

    CAS  PubMed  Google Scholar 

  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni GD, Testa L, Fagioli F (2008) Stem cell treatment in Amyotrophic Lateral Sclerosis. J Neurol Sci 265: 78–83.

    CAS  PubMed  Google Scholar 

  • Mitchelle J, Borasio G (2007) Amyotrophic lateral sclerosis. Lancet 369: 2031–2041.

    Google Scholar 

  • Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73: 1–60.

    CAS  PubMed  Google Scholar 

  • Morris HM, Hashimoto T, Lewis DA (2008) Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex 18: 1575–1587.

    PubMed  Google Scholar 

  • Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, Birchmeier C (2002) The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34: 551–562.

    CAS  PubMed  Google Scholar 

  • Murashov AK, Pak ES, Hendricks WA, Owensby JP, Sierpinski PL, Tatko LM, Fletcher PL (2004) Directed differentiation of embyronic stem cells into dorsal interneurons. FASEB J 2: 252–254.

    Google Scholar 

  • Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S (2002) Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev 16: 548–553.

    CAS  PubMed  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5: 1279–1287.

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2000) Genes and addiction. Nat Genet 26: 277–281.

    CAS  PubMed  Google Scholar 

  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59: 89–102.

    CAS  PubMed  Google Scholar 

  • Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, Ishii S, Itoyama Y, Sobue G, Okano H (2008) Spatio-temporal recapitulation of central nervous system development by murine ES cell-derived neural stem/progenitor cells. Stem Cells 26: 3086–3098.

    CAS  PubMed  Google Scholar 

  • Okada Y, Shimazaki T, Sobue G, Okano H (2004) Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 275: 124–142.

    CAS  PubMed  Google Scholar 

  • Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132: 335–344.

    CAS  PubMed  Google Scholar 

  • Panganiban G, Rubenstein JL (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129: 4371–4386.

    CAS  PubMed  Google Scholar 

  • Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17: 729–737.

    CAS  PubMed  Google Scholar 

  • Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101: 12543–12548.

    CAS  PubMed  Google Scholar 

  • Petrova ES, Otellin VA (2007) Serotonin is involved in the regulation of histogenetic processes in rat embryonic neocortex. Bull Exp Biol Med 143: 372–375.

    CAS  PubMed  Google Scholar 

  • Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128: 2977–2986.

    PubMed  Google Scholar 

  • Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M (2007) Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development 134: 357–366.

    CAS  PubMed  Google Scholar 

  • Plachta N, Bibel M, Tucker KL, Barde YA (2004) Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 131: 5449–5456.

    CAS  PubMed  Google Scholar 

  • Price SR, Briscoe J (2004) The generation and diversification of spinal motor neurons: signals and responses. Mech Dev 121: 1103–1115.

    CAS  PubMed  Google Scholar 

  • Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development 129: 2649–2661.

    CAS  PubMed  Google Scholar 

  • Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112 (Pt 5): 601–612.

    CAS  PubMed  Google Scholar 

  • Roelink H, Porter J, Chiang C, Tanabe Y, Chang D, Beachy P, Jessell T (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81: 445–455.

    CAS  PubMed  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39: 13–25.

    CAS  PubMed  Google Scholar 

  • Roussa E, Krieglstein K (2004) Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-beta. Cell Tissue Res 318: 23–33.

    CAS  PubMed  Google Scholar 

  • Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, Nakazato Y, Mikuni M (2007) Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28: 143–150.

    PubMed  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363: 1783–1793.

    CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP (2000) Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95: 933–952.

    CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 377: 757.

    CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790.

    CAS  PubMed  Google Scholar 

  • Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76: 319–370.

    CAS  PubMed  Google Scholar 

  • Shetty AK, Hattiangady B (2007) Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells 25: 2396–2407.

    PubMed  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840.

    CAS  PubMed  Google Scholar 

  • Smukler SR, Runciman SB, Xu S, van der Kooy D (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172: 79–90.

    CAS  PubMed  Google Scholar 

  • Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25: 411–418.

    CAS  PubMed  Google Scholar 

  • Stephens B, Guiloff RJ, Navarrete R, Newman P, Nikhar N, Lewis P (2006) Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 244: 41–58.

    PubMed  Google Scholar 

  • Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132: 2007–2021.

    CAS  PubMed  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30: 244–250.

    CAS  PubMed  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126: 3359–3370.

    CAS  PubMed  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J-I, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-on mouse. J Comp Neurol 467: 60–79.

    CAS  PubMed  Google Scholar 

  • Tanaka A, Kamiakito T, Hakamata Y, Fujii A, Kuriki K, Fukayama M (2001) Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Res 912: 105–115.

    CAS  PubMed  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414: 112–117.

    CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    CAS  PubMed  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65–78.

    CAS  PubMed  Google Scholar 

  • Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31: 395–405.

    CAS  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369: 218–228.

    CAS  PubMed  Google Scholar 

  • Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest 53: 61–69.

    PubMed  Google Scholar 

  • Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8: 288–296.

    CAS  PubMed  Google Scholar 

  • Wenner P, O’Donovan MJ, Matise MP (2000) Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord. J Neurophysiol 84: 2651–2657.

    CAS  PubMed  Google Scholar 

  • Wernig M, Benninger F, Schmandt T, Rade M, Tucker KL, Bussow H, Beck H, Brustle O (2004) Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci 24: 5258–5268.

    CAS  PubMed  Google Scholar 

  • Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GABAergic neuron differentiation. Biochem Biophys Res Commun 284: 674–680.

    CAS  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385–397.

    CAS  PubMed  Google Scholar 

  • Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B, Bjorklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 327: 1556–1563.

    CAS  PubMed  Google Scholar 

  • Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282: 1–13.

    CAS  PubMed  Google Scholar 

  • Wilson SI, Rydstrom A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411: 325–330.

    CAS  PubMed  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7: 687–695.

    CAS  PubMed  Google Scholar 

  • Xu Q, Cobos I, Cruz EDL, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24: 2612–2622.

    CAS  PubMed  Google Scholar 

  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93: 755–766.

    CAS  PubMed  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183–186.

    CAS  PubMed  Google Scholar 

  • Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H (2003) The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci U S A 100: 9005–9010.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Grabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ammon, N., Hartman, N., Grabel, L. (2010). Directing Differentiation of Embryonic Stem Cells into Distinct Neuronal Subtypes. In: Ulrich, H. (eds) Perspectives of Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3375-8_8

Download citation

Publish with us

Policies and ethics