Skip to main content

Tissue Biology of Proliferation and Cell Death Among Retinal Progenitor Cells

  • Chapter
  • First Online:
  • 681 Accesses

Abstract

The retina is a complex network of various molecularly and neurochemically distinct cell types. These heterogeneous and highly interactive neurons and glia are stratified in rather precisely organized layers, and often distributed in regular arrays, surrounded by rich, laminated extracellular matrix, as well as a dual vascular system. All components of retinal tissue affect the proliferation and survival of retinal progenitor cells through a combination of tightly regulated genetic and microenvironmental mechanisms. The latter are provided for by a variety of extrinsic modulators, including neurotrophins, interleukins, neurotransmitters and neuropeptides, acting through numerous types of plasma membrane receptors, and cross-talking intracellular signaling pathways. This chapter reviews some of the major determinants of retinal cell population dynamics, which are a pre-requisite for the design of tissue engineering applied to retinal degenerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine, serotonin

AC:

adenylyl cyclase

ACh:

acetylcholine

AIF:

apoptosis-inducing factor

AMPA:

α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid

Apaf-1:

apoptotic protease-activating factor-1

ATM:

ataxia and teleangiectasia mutated

ATP:

adenosine triphosphate

ATR:

ATM and Rad3-related

Bcl-2:

B-cell lymphoma protein-2

BDNF:

brain-derived growth factor

BMP:

bone morphogenetic protein

BrdU:

bromo-deoxyuridine

CAK:

CDK activating kinase

cAMP:

cyclic adenosine-3-5-monophosphate

CDC:

cell division cycle

CDK:

cyclin-dependent protein kinase

CE:

cilliary epithelium

CK2:

casein kinase 2

Cl- :

chloride ion

CMZ:

cilliary marginal zone

CNS:

central nervous system

CNTF:

ciliary neurotrophic factor

CREB:

cAMP Response Element Binding protein

DDC:

DOPA decarboxylase

DFO:

deferoxamine

Dhh:

desert hedgehog

DNA-PK:

DNA protein kinase

DOPA:

dihydroxyphenylalanine

DSB:

double strand break

EGF:

epidermal growth factor

ERK:

extracellular signal-related kinase

FasL:

Fas ligand

FGF:

fibroblast growth factor

GABA:

gamma amino butiric acid

GAD:

glutamic acid decarboxylase

GCL:

ganglion cell layer

GTP:

guanosine triphosphate

Gy:

gray

Hh:

hedgehog proteins

IFN:

interferon

IGF:

insulin-related growth factor

Ihh:

Indian hedgehog

IL:

interleukin

INL:

inner nuclear layer

INM:

interkinetic nuclear migration

IP3 :

inositol triphosphate

IR:

ionizing radiation

mAChR:

muscarinic acetylcholine receptor(s)

MAPK:

mitogen activated kinase

MG132:

carbobenzoxyl-leucinyl-leucinyl-leucinal

mGluR:

metabotropic glutamate receptor

MIMO:

mimosine

MOP-R:

opioid receptor

nAChR:

nicotinic acetylcholine receptor(s)

NBL:

neuroblastic layer

NMDA:

N-methyl-D-aspartate

NO:

nitrous oxide

NPY:

neuropeptide Y

NT:

neurotrophin

ODC:

ornitine decarboxylase

OLO:

olomoucine

PACAP:

Pituitary Adenylyl Cyclase-activating Polypeptide

PAF:

platelet activating factor

PCD:

programmed cell death

PDTC:

pyrrolidinedithiocarbamate

PI3K:

phosphoinositide-3-kinase

PKA:

cAMP-activated protein kinase

PKC:

protein kinase C

PLC:

phospholipase C

PNMT:

phenylethanolamine N-methyltransferase

Rb:

retinoblastoma protein

RPC:

retinal progenitor cell(s)

Shh:

sonic hedgehog

STAT:

signal transducer and activator of transcription

TGF:

transforming growth factor

TH:

tyrosine hydroxylase

TrK:

tyrosine kinase receptor

twhh:

tiggy-winkle hedgehog

Wnt:

wingless-int oncogene

References

  • Abbas T, Dutta A (2006) CDK2-activating kinase (CAK): more questions than answers. Cell Cycle 5:1123–1124.

    CAS  PubMed  Google Scholar 

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368.

    CAS  PubMed  Google Scholar 

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196.

    CAS  PubMed  Google Scholar 

  • Abu-Qare AW, Abou-Donia MB (2001) Biomarkers of apoptosis: release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2'-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J Toxicol Environ Health B Crit Rev 4:313–332.

    CAS  PubMed  Google Scholar 

  • Adler R (1986) Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev Biol 117:520–527.

    CAS  PubMed  Google Scholar 

  • Agathocleous M, Locker M, Harris WA, Perron M (2007) A general role of hedgehog in the regulation of proliferation. Cell Cycle 6:156–159.

    CAS  PubMed  Google Scholar 

  • Ahmad I, Das AV, James J, Bhattacharya S, Zhao X (2004) Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol 15:53–62.

    CAS  PubMed  Google Scholar 

  • Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521.

    CAS  PubMed  Google Scholar 

  • Ahmed S, Reynolds BA, Weiss S (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15:5765–5778.

    CAS  PubMed  Google Scholar 

  • Akagi T, Haruta M, Akita J, Nishida A, Honda Y, Takahashi M (2003) Different characteristics of rat retinal progenitor cells from different culture periods. Neurosci Lett 341:213–216.

    CAS  PubMed  Google Scholar 

  • Albuquerque EX, Pereira EF, Castro NG, Alkondon M, Reinhardt S, Schroder H, Maelicke A (1995) Nicotinic receptor function in the mammalian central nervous system. Ann N Y Acad Sci 757:48–72.

    CAS  PubMed  Google Scholar 

  • Alexiades MR, Cepko CL (1996) Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn 205:293–307.

    CAS  PubMed  Google Scholar 

  • Allcorn S, Catsicas M, Mobbs P (1996) Developmental expression and self-regulation of Ca2+ entry via AMPA/KA receptors in the embryonic chick retina. Eur J Neurosci 8: 2499–2510.

    CAS  PubMed  Google Scholar 

  • Altschuler RA, Mosinger JL, Hoffman DW, Parakkal MH (1982) Immunocytochemical localization of enkephalin-like immunoreactivity in the retina of the guinea pig. Proc Natl Acad Sci U S A 79:2398–2400.

    CAS  PubMed  Google Scholar 

  • Altshuler D, Lo Turco JJ, Rush J, Cepko C (1993) Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119:1317–1328.

    CAS  PubMed  Google Scholar 

  • Alvaro AR, Martins J, Araújo IM, Rosmaninho-Salgado J, Ambrósio AF, Cavadas C (2008) Neuropeptide Y stimulates retinal neural cell proliferation – involvement of nitric oxide. J Neurochem 105:2501–2510.

    CAS  PubMed  Google Scholar 

  • Alvaro AR, Rosmaninho-Salgado J, Santiago AR, Martins J, Aveleira C, Santos PF, Pereira T, Gouveia D, Carvalho AL, Grouzmann E, Ambrósio AF, Cavadas C (2007) NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Müller cells. Neurochem Int 50:757–763.

    CAS  PubMed  Google Scholar 

  • Amato MA, Boy S, Perron M (2004) Hedgehog signaling in vertebrate eye development: a growing puzzle. Cell Mol Life Sci 61:899–910.

    CAS  PubMed  Google Scholar 

  • Anchan RM, Reh TA (1995) Transforming growth factor-beta-3 is mitogenic for rat retinal progenitor cells in vitro. J Neurobiol 28:133–145.

    CAS  PubMed  Google Scholar 

  • Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–936.

    CAS  PubMed  Google Scholar 

  • Aramori I, Nakanishi S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8:757–765.

    CAS  PubMed  Google Scholar 

  • Bagnoli P, Dal Monte M, Casini G (2003) Expression of neuropeptides and their receptors in the developing retina of mammals. Histol Histopathol 18:1219–1242.

    CAS  PubMed  Google Scholar 

  • Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK (2008) Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82: 304–319.

    CAS  PubMed  Google Scholar 

  • Bao ZZ, Cepko CL (1997) The expression and function of Notch pathway genes in the developing rat eye. J Neurosci 17:1425–1434.

    CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001) Mammalian G1 and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13:738–747.

    CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245.

    CAS  PubMed  Google Scholar 

  • Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8:221–232.

    CAS  PubMed  Google Scholar 

  • Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099.

    CAS  PubMed  Google Scholar 

  • Baughman RW, Bader CR (1977) Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res 138:469–485.

    CAS  PubMed  Google Scholar 

  • Baye LM, Link BA (2008) Nuclear migration during retinal development. Brain Res 1192:29–36.

    CAS  PubMed  Google Scholar 

  • Beazley LD, Perry VH, Baker B, Darby JE (1987) An investigation into the role of ganglion cells in the regulation of division and death of other retinal cells. Dev Brain Res 33:169–184.

    Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–39.

    Google Scholar 

  • Berridge MJ (1995) Calcium signalling and cell proliferation. Bioessays 17:491–500.

    CAS  PubMed  Google Scholar 

  • Biade S, Stobbe CC, Chapman JD (1997) The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. Radiat Res 147:416–421.

    CAS  PubMed  Google Scholar 

  • Borges HL, Chao C, Xu Y, Linden R, Wang JY (2004) Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53. Cell Death Differ 11:494–502.

    CAS  PubMed  Google Scholar 

  • Borges HL, Linden R (1999) Gamma irradiation leads to two waves of apoptosis in distinct cell populations of the retina of newborn rats. J Cell Sci 112:4315–4324.

    CAS  PubMed  Google Scholar 

  • Borges HL, Linden R, Wang JY (2008) DNA damage-induced cell death: lessons from the central nervous system. Cell Res 18:17–26.

    CAS  PubMed  Google Scholar 

  • Bovolenta P, Frade JM, Marti E, Rodriguez-Pena MA, Barde YA, Rodriguez-Tebar A (1996) Neurotrophin-3 antibodies disrupt the normal development of the chick retina. J Neurosci 16:4402–4410.

    CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312:2654–2659.

    CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308.

    CAS  PubMed  Google Scholar 

  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424.

    CAS  PubMed  Google Scholar 

  • Bull ND, Johnson TV, Martin KR (2008) Stem cells for neuroprotection in glaucoma. Prog Brain Res 173:511–519.

    CAS  PubMed  Google Scholar 

  • Burdak-Rothkamm S, Rothkamm K, Prise KM (2008) ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res 68:7059–7065.

    CAS  PubMed  Google Scholar 

  • Burke R, Basler K (1996) Hedgehog-dependent patterning in the Drosophila eye can occur in the absence of Dpp signaling. Dev Biol 179:360–368.

    CAS  PubMed  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198.

    CAS  PubMed  Google Scholar 

  • Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29:1–35.

    CAS  PubMed  Google Scholar 

  • Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynski M, Montrucchio G, Camussi G (2000) PAF produced by human breast cancer cellspromotes migration and proliferation of tumor cells and neo-angiogenesis. Am J Pathol 157:1713–1725.

    CAS  PubMed  Google Scholar 

  • Bussolino F, Pescarmona GP, Camussi G, Gremo F (1988) Acetylcholine and dopamine promote the production of Platelet-activating factor in immature cells of chick embryonic retina. J Neurochem 51:1755–1759.

    CAS  PubMed  Google Scholar 

  • Bussolino F, Torelli S, Stefanini E, Gremo F (1989) Platelet-activating factor production occurs through stimulation of cholinergic and dopaminergic receptors in the chick retina. J Lipid Mediat 1:283–288.

    CAS  PubMed  Google Scholar 

  • Cam H, Dynlacht BD (2003) Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3: 311–316.

    CAS  PubMed  Google Scholar 

  • Campos CB, Bédard PA, Linden R (2002) Activation of p38 mitogen-activated protein kinase during normal mitosis in the developing retina. Neuroscience 112:583–591.

    CAS  PubMed  Google Scholar 

  • Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115: 4727–4734.

    CAS  PubMed  Google Scholar 

  • Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445.

    CAS  PubMed  Google Scholar 

  • Carneiro AC, Fragel-Madeira L, Silva-Neto MA, Linden R (2008) A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol 68:620–631.

    PubMed  Google Scholar 

  • Casini G, Brecha NC (1992) Postnatal development of tyrosine hydroxylase immunoreactive amacrine cells in the rabbit retina: I. Morphological characterization. J Comp Neurol 326:283–301.

    CAS  PubMed  Google Scholar 

  • Catsicas M, Mobbs P (2001) GABAb receptors regulate chick retinal calcium waves. J Neurosci 21:897–910.

    CAS  PubMed  Google Scholar 

  • Cayouette M (2007) Expanding neuronal layers by the local division of committed precursors. Neuron 56:575–577.

    CAS  PubMed  Google Scholar 

  • Cayouette M, Poggi L, Harris WA (2006) Lineage in the vertebrate retina. Trends Neurosci 29:563–570.

    CAS  PubMed  Google Scholar 

  • Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130:2329–2339.

    CAS  PubMed  Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737.

    CAS  PubMed  Google Scholar 

  • Cepko CL (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol 9:37–46.

    CAS  PubMed  Google Scholar 

  • Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93:589–595.

    CAS  PubMed  Google Scholar 

  • Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263.

    CAS  PubMed  Google Scholar 

  • Chan A, Lakshminrusimha S, Heffner R, Gonzalez-Fernandez F (2007) Histogenesis of retinal dysplasia in trisomy 13. Diagn Pathol 2:48–49.

    PubMed  Google Scholar 

  • Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, Wang JY, Anderson CW, Appella E, Xu Y (2006) Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26: 6859–6869.

    CAS  PubMed  Google Scholar 

  • Chau BN, Borges HL, Chen TT, Masselli A, Hunton IC, Wang JY (2002) Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat Cell Biol 4: 757–765.

    CAS  PubMed  Google Scholar 

  • Chavarría T, Valenciano AI, Mayordomo R, Egea J, Comella JX, Hallböök F, de Pablo F, de la Rosa EJ (2007) Differential, age-dependent MEK-ERK and PI3K-Akt activation by insulin acting as a survival factor during embryonic retinal development. Dev Neurobiol 67:1777–1788.

    PubMed  Google Scholar 

  • Chen Y, Zhao X (1998) Shaping limbs by apoptosis. J Exp Zool 282:691–702.

    CAS  PubMed  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641.

    CAS  PubMed  Google Scholar 

  • Cheong N, Wang X, Wang Y, Iliakis G (1994) Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res 314:77–85.

    CAS  PubMed  Google Scholar 

  • Chiarini LB, Leal-Ferreira ML, de Freitas FG, Linden R (2003) Changing sensitivity to cell death during development of retinal photoreceptors. J Neurosci Res 74:875–883.

    CAS  PubMed  Google Scholar 

  • Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LM, Baker SJ, Sorrentino BP, Dyer MA (2009) cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc. Natl Acad Sci USA. 106(16):6685–6690.

    Google Scholar 

  • Ciechomska IA, Goemans CG, Tolkovsky AM (2008) Molecular links between autophagy and apoptosis. Methods Mol Biol 445:175–193.

    CAS  PubMed  Google Scholar 

  • Cluzel J, Doly M, Bazan NG, Bonhomme B, Braquet P (1995) Inhibition of platelet-activating factor-induced retinal impairments by cholera and pertussis toxins. Ophthalmic Res 27:153–157.

    CAS  PubMed  Google Scholar 

  • Cohen J (1987) Postnatal development of phenylethanolamine-N-methyltransferase activity of rat retina. Neurosci Lett 83:138–142.

    CAS  PubMed  Google Scholar 

  • Cohen RI, Molina-Holgado E, Almazan G (1996) Carbachol stimulates c-fos expression and proliferation in oligodendrocyte progenitors. Brain Res Mol Brain Res 43:193–201.

    CAS  PubMed  Google Scholar 

  • Cortez D (2003) Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 278:37139–37145.

    CAS  PubMed  Google Scholar 

  • Cuadros MA, Ríos A (1988) Spatial and temporal correlation between early nerve fiber growth and neuroepithelial cell death in the chick embryo retina. Anat Embryol 178: 543–551.

    CAS  PubMed  Google Scholar 

  • da Costa Calaza K, Hokoc JN, Gardino PF (2000) Neurogenesis of GABAergic cells in the chick retina. Int J Dev Neurosci 18:721–726.

    CAS  PubMed  Google Scholar 

  • Dagnino L, Fry CJ, Bartley SM, Farnham P, Gallie BL, Phillips RA (1997) Expression patterns of the E2F family of transcription factors during mouse nervous system development. Mech Dev 66:13–25.

    CAS  PubMed  Google Scholar 

  • Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006) Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302.

    CAS  PubMed  Google Scholar 

  • Das I, Sparrow JR, Lin MI, Shih E, Mikawa T, Hempstead BL (2000) Trk C signaling is required for retinal progenitor cell proliferation. J Neurosci 20:2887–2895.

    CAS  PubMed  Google Scholar 

  • de la Cruz JP, Moreno A, Ruiz-Ruiz MI, Garcia-Campos J, Sanchez de la Cuesta F (1998) Effect of WEB 2086-BS, an antagonist of platelet-activating factor receptors, on retinal vascularity in diabetic rats. Eur J Pharmacol 360: 37–42.

    CAS  PubMed  Google Scholar 

  • de la Rosa EJ, de Pablo F (2000) Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci 23:454–458.

    CAS  PubMed  Google Scholar 

  • De Lucchini S, Ori M, Cremisi F, Nardini M, Nardi I (2005) 5-HT2B-mediated serotonin signaling is required for eye morphogenesis in Xenopus. Mol Cell Neurosci 29:299– 312.

    CAS  PubMed  Google Scholar 

  • De Lucchini S, Ori M, Nardini M, Marracci S, Nardi I (2003) Expression of 5-HT2B and 5-HT2C receptor genes is associated with proliferative regions of Xenopus developing brain and eye. Mol Brain Res 115:196–201.

    CAS  PubMed  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119.

    CAS  PubMed  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390.

    CAS  PubMed  Google Scholar 

  • Del Bene F, Wehman AM, Link BA, Baier H (2008) Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:1055–1065.

    CAS  PubMed  Google Scholar 

  • Denizot Y, Desplat V, Drouet M, Bertin F, Melloni B (2001) Is there a role of platelet-activating factor in human lung cancer? Lung Cancer 33:195–202.

    CAS  PubMed  Google Scholar 

  • Derouiche A, Asan E (1999) The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies. Eur J Neurosci 11:1391–1402.

    CAS  PubMed  Google Scholar 

  • Dhar A, Shukla SD (1991) Involvement of pp60c-src in platelet-activating factor-stimulated platelets. Evidence for translocation from cytosol to membrane. J Biol Chem 266: 18797–18801.

    CAS  PubMed  Google Scholar 

  • Dhar A, Shukla SD (1994) Electrotransjection of pp60v-src monoclonal antibody inhibits activation of phospholipase C in platelets. A new mechanism for platelet-activating factor responses. J Biol Chem 269:9123–9127.

    CAS  PubMed  Google Scholar 

  • Dhomen NS, Balaggan KS, Pearson RA, Bainbridge JW, Levine ED, Ali RR, Sowden JC (2006) Absence of chx10 causes neural progenitors to persist in the adult retina. Invest Ophthalmol Vis Sci 47:386–396.

    PubMed  Google Scholar 

  • Dimaras H, Coburn B, Pajovic S, Gallie BL (2006) Loss of p75 neurotrophin receptor expression accompanies malignant progression to human and murine retinoblastoma. Mol Carcinog 45:333–343.

    CAS  PubMed  Google Scholar 

  • Dkhissi O, Julien JF, Wasowicz M, Dalil-Thiney N, Nguyen-Legros J, Versaux-Botteri C (2001) Differential expression of GAD(65) and GAD(67) during the development of the rat retina. Brain Res 919:242–249.

    CAS  PubMed  Google Scholar 

  • Doly M, Cluzel J, Bonhomme B, Millerin M, Braquet P (1995) Protective effect of a specific PAF antagonist on vincristine-induced experimental retinopathy. Acta Ophthalmol Scand 73:155–157.

    CAS  PubMed  Google Scholar 

  • Domingos PM, Steller H (2007) Pathways regulating apoptosis during patterning and development. Curr Opin Genet Dev 17:294–299.

    CAS  PubMed  Google Scholar 

  • Donovan SL, Dyer MA (2005) Regulation of proliferation during central nervous system development. Semin Cell Dev Biol 16:407–421.

    CAS  PubMed  Google Scholar 

  • Donovan SL, Schweers B, Martins R, Johnson D, Dyer MA (2006) Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol 4:14–15.

    PubMed  Google Scholar 

  • dos Santos AA, Medina SV, Sholl-Franco A, de Araujo EG (2003) PMA decreases the proliferation of retinal cells in vitro: the involvement of acetylcholine and BDNF. Neurochem Int 42:73–80.

    PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55.

    CAS  PubMed  Google Scholar 

  • Dupuis F, Levasseur S, Jean-Louis F, Dulery C, Praloran V, Denizot Y, Michel L (1997) Production, metabolism and effect of platelet-activating factor on the growth of the human K562 erythroid cell line. Biochim Biophys Acta 1359:241–249.

    CAS  PubMed  Google Scholar 

  • Dyer M, Cepko CL (2000a) p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127:3593–3605.

    CAS  PubMed  Google Scholar 

  • Dyer MA, Cepko CL (2000b) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880.

    CAS  PubMed  Google Scholar 

  • Dyer M, Cepko CL (2001a) p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J Neurosci 21:4259–4271.

    CAS  PubMed  Google Scholar 

  • Dyer MA, Cepko CL (2001b) Regulating proliferation during retinal development. Nat Rev Neurosci 2:333–342.

    CAS  PubMed  Google Scholar 

  • Díaz B, Pimentel B, de Pablo F, de la Rosa EJ (1999) Apoptotic cell death affecting proliferating neuroepithelial cells in the embryonic retina is prevented by insulin. Eur J Neurosci 11:1624–1632.

    PubMed  Google Scholar 

  • Díaz B, Serna J, De Pablo F, de la Rosa EJ (2000) In vivo regulation of cell death by embryonic (pro)insulin and the insulin receptor during early retinal neurogenesis. Development 127:1641–1649.

    PubMed  Google Scholar 

  • D‘Sa C, Klocke BJ, Cecconi F, Lindsten T, Thompson CB, Korsmeyer SJ, Flavell RA, Roth KA (2003) Caspase regulation of genotoxin-induced neural precursor cell death. J Neurosci Res 74:435–445.

    PubMed  Google Scholar 

  • Ekman R, Tornqvist K (1985) Glucagon and VIP in the retina. Invest Ophthalmol Vis Sci 26:1405–1409.

    CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50.

    CAS  PubMed  Google Scholar 

  • Erlich RB, Werneck CC, Mourão PA, Linden R (2003) Major glycosaminoglycan species in the developing retina: synthesis, tissue distribution and effects upon cell death. Exp Eye Res 77:157–165.

    CAS  PubMed  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187.

    CAS  PubMed  Google Scholar 

  • Ferriero DM, Sagar SM (1989) Development of neuropeptide Y immunoreactive neurons in the rat retina. Dev Brain Res 48:19–26.

    CAS  Google Scholar 

  • Finlay BL (2008) The developing and evolving retina: using time to organize form. Brain Res 1192:5–16.

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Dierks BD, Reh TA (2002a) Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development 129:2283–2291.

    CAS  PubMed  Google Scholar 

  • Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002b) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22: 9387–9398.

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Omar G, Walton NA, Verrill TA, Unson CG (2005) Glucagon-expressing neurons within the retina regulate the proliferation of neural progenitors in the circumferential marginal zone of the avian eye. J Neurosci 25: 10157–10166.

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–2052.

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2003) Growth factors induce neurogenesis in the ciliary body. Dev Biol 259:225–240.

    CAS  PubMed  Google Scholar 

  • Fletcher EL, Kalloniatis M (1997) Localisation of amino acid neurotransmitters during postnatal development of the rat retina. J Comp Neurol 380:449–471.

    CAS  PubMed  Google Scholar 

  • Florian C, Langmann T, Weber BH, Morsczeck C (2008) Murine Müller cells are progenitor cells for neuronal cells and fibrous tissue cells. Biochem Biophys Res Commun 374:187–191.

    CAS  PubMed  Google Scholar 

  • Fontaine RH, Cases O, Lelièvre V, Mesplès B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P (2008) IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 15:1542–1552.

    CAS  PubMed  Google Scholar 

  • Frade JM, Bovolenta P, Martínez-Morales JR, Arribas A, Barbas JA, Rodríguez-Tébar A (1997) Control of early cell death by BDNF in the chick retina. Development 124:3313–3320.

    CAS  PubMed  Google Scholar 

  • Frade JM, Bovolenta P, Rodriguez-Tebar A (1999) Neurotrophins and other growth factors in the generation of retinal neurons. Microsc Res Tech 45:243–251.

    CAS  PubMed  Google Scholar 

  • Frade JM, Marti E, Bovolenta P, Rodriguez-Pena MA, Perez-Garcia D, Rohrer H, Edgar D, Rodriguez-Tebar A (1996a) Insulin-like growth factor-I stimulates neurogenesis in chick retina by regulating expression of the alpha 6 integrin subunit. Development 122:2497–2506.

    CAS  PubMed  Google Scholar 

  • Frade JM, Rodríguez-Tébar A, Barde YA (1996b) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168.

    CAS  PubMed  Google Scholar 

  • França GR, Freitas RC, Ventura AL (2007) ATP-induced proliferation of developing retinal cells: regulation by factors released from postmitotic cells in culture. Int J Dev Neurosci 25:283–291.

    PubMed  Google Scholar 

  • Frederick JM (1987) The emergence of GABA-accumulating neurons during retinal histogenesis in the embryonic chick. Exp Eye Res 45:933–945.

    CAS  PubMed  Google Scholar 

  • Fredholm BB (1997) Adenosine and neuroprotection. Int Rev Neurobiol 40:259–280.

    CAS  PubMed  Google Scholar 

  • Fujita S (1962) Kinetics of cellular proliferation. Exp Cell Res 28:52–60.

    CAS  PubMed  Google Scholar 

  • Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17:6670–6677.

    CAS  PubMed  Google Scholar 

  • Galli-Resta L, Leone P, Bottari D, Ensini M, Rigosi E, Novelli E (2008) The genesis of retinal architecture: an emerging role for mechanical interactions? Prog Retin Eye Res 27:260–283.

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8:78–91.

    CAS  PubMed  Google Scholar 

  • Garcia M, Forster V, Hicks D, Vecino E (2003) In vivo expression of neurotrophins and neurotrophin receptors is conserved in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 44:4532–4541.

    PubMed  Google Scholar 

  • Gardino PF, dos Santos RM, Hokoc JN (1993) Histogenesis and topographical distribution of tyrosine hydroxylase immunoreactive amacrine cells in the developing chick retina. Brain Res Dev Brain Res 72:226–236.

    CAS  PubMed  Google Scholar 

  • Gaur VP, Liu Y, Turner JE (1992) RPE conditioned medium stimulates photoreceptor cell survival, neurite outgrowth and differentiation in vitro. Exp Eye Res 54:645–659.

    CAS  PubMed  Google Scholar 

  • Godinho L, Williams PR, Claassen Y, Provost E, Leach SD, Kamermans M, Wong RO (2007) Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56:597–603.

    CAS  PubMed  Google Scholar 

  • Granã X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinases (CDK), growth supressor genes and cyclin-dependent kinases inhibitors (CDKIs). Oncogene 11:211–219.

    PubMed  Google Scholar 

  • Greka A, Lipton SA, Zhang D (2000) Expression of GABA(C) receptor rho1 and rho2 subunits during development of the mouse retina. Eur J Neurosci 12:3575–3582.

    CAS  PubMed  Google Scholar 

  • Grunder T, Kohler K, Guenther E (2000a) Distribution and developmental regulation of AMPA receptor subunit proteins in rat retina. Invest Ophthalmol Vis Sci 41:3600–3606.

    CAS  PubMed  Google Scholar 

  • Grunder T, Kohler K, Kaletta A, Guenther E (2000b) The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J Neurobiol 44:333–342.

    CAS  PubMed  Google Scholar 

  • Guilarducci-Ferraz CV, da Silva GM, Torres PM, Dos Santos AA, Araujo EG (2008) The increase in retinal cells proliferation induced by FGF2 is mediated by tyrosine and PI3 kinases. Neurochem Res 33:754–764.

    CAS  PubMed  Google Scholar 

  • Guimaraes CA, Linden R (2004) Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271:1638–1650.

    CAS  Google Scholar 

  • Guizzetti M, Costa P, Peters J, Costa LG (1996) Acetylcholine as a mitogen: muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells. Eur J Pharmacol 297:265–273.

    CAS  PubMed  Google Scholar 

  • Guizzetti M, Wei M, Costa LG (1998) The role of protein kinase C alpha and epsilon isozymes in DNA synthesis induced by muscarinic receptors in a glial cell line. Eur J Pharmacol 359:223–233.

    CAS  PubMed  Google Scholar 

  • Gutierrez GJ, Ronai Z (2006) Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 31:324–332.

    CAS  PubMed  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788.

    PubMed  Google Scholar 

  • Hadjiconstantinou M, Mariani AP, Panula P, Joh TH, Neff NH (1984) Immunohistochemical evidence for epinephrine-containing retinal amacrine cells. Neuroscience 13:547–551.

    CAS  PubMed  Google Scholar 

  • Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704.

    CAS  PubMed  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352.

    CAS  PubMed  Google Scholar 

  • Hamassaki-Britto DE, Gardino PF, Hokoc JN, Keyser KT, Karten HJ, Lindstrom JM, Britto LR (1994) Differential development of alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina. J Comp Neurol 347:161–170.

    CAS  PubMed  Google Scholar 

  • Han SJ, Conti M (2006) New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle 5:227–231.

    CAS  PubMed  Google Scholar 

  • Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579–591.

    CAS  PubMed  Google Scholar 

  • Hardy P, Beauchamp M, Sennlaub F, Gobeil F Jr, Tremblay L, Mwaikambo B, Lachapelle P, Chemtob S (2005) New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins. Leukot Essent Fatty Acids 72:301–325.

    CAS  Google Scholar 

  • Harper JV, Brooks G (2005) The mammalian cell cycle: an overview. Methods Mol Biol 296:113–153.

    CAS  PubMed  Google Scholar 

  • Hartveit E, Brandstatter JH, Sassoe-Pognetto M, Laurie DJ, Seeburg PH, Wassle H (1994) Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J Comp Neurol 348: 570–582.

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.

    CAS  PubMed  Google Scholar 

  • Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774.

    CAS  PubMed  Google Scholar 

  • Hayes NL, Nowakowski RS (2000) Exploiting the dynamics of S-phase tracers in the developing brain: Interkinetic nuclear migration for cells entering versus leavinhg the S-phase. Dev Neurosci 22:44–55.

    CAS  PubMed  Google Scholar 

  • Henriquez M, Armisen R, Stutzin A, Quest AF (2008) Cell death by necrosis, a regulated way to go. Curr Mol Med 8:187–206.

    CAS  PubMed  Google Scholar 

  • Heo JS, Han HJ (2006) ATP stimulates mouse embryonic stem cell proliferation via PKC, PI3K/Akt, and MAPKs signaling pathways. Stem Cells 12:2637–2648.

    Google Scholar 

  • Hernandez-Sanchez C, Lopez-Carranza A, Alarcon C, de La Rosa EJ, de Pablo F (1995) Autocrine/paracrine role of insulin-related growth factors in neurogenesis: local expression and effects on cell proliferation and differentiation in retina. Proc Natl Acad Sci U S A 92:9834–9838.

    CAS  PubMed  Google Scholar 

  • Herzog KH, Schulz A, Buerkle C, Gromoll C, Braun JS (2007) Radiation-induced apoptosis in retinal progenitor cells is p53-dependent with caspase-independent DNA fragmentation. Eur J Neurosci 25:1349–1356.

    PubMed  Google Scholar 

  • Hicks D (1998) Putative functions of fibroblast growth factors in retinal development, maturation and survival. Semin Cell Dev Biol 9:263–269.

    CAS  PubMed  Google Scholar 

  • Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12: 2022–2033.

    CAS  PubMed  Google Scholar 

  • Hill DR (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol 84: 249–257.

    CAS  PubMed  Google Scholar 

  • Hokoc JN, Ventura AL, Gardino PF, de Mello FG (1990) Developmental immunoreactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis. Brain Res 532:197–202.

    CAS  PubMed  Google Scholar 

  • Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48.

    CAS  PubMed  Google Scholar 

  • Honda Z-I, Takano T, Gotoh Y, Nishida E, Ito K, Shimizu T (1994) Transfected platelet-activating factor receptor activates mitogen-activated protein (MAP) kinase and MAP kinase kinase in Chinese hamster ovary cells. J Biol Chem 269:2307–2315.

    CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554.

    CAS  PubMed  Google Scholar 

  • Huang BO, Redburn DA (1996) GABA-induced increases in [Ca2+]i in retinal neurons of postnatal rabbits. Vis Neurosci 13:441–447.

    CAS  PubMed  Google Scholar 

  • Hurley PJ, Bunz F (2007) ATM and ATR: components of an integrated circuit. Cell Cycle 6:414–417.

    CAS  PubMed  Google Scholar 

  • Ilia M, Jeffery G (1999) Retinal mitosis is regulated by dopa, a melanin precursor that may influence the time at which cells exit the cell cycle: analysis of patterns of cell production in pigmented and albino retinae. J Comp Neurol 405:394–405.

    CAS  PubMed  Google Scholar 

  • Inatani M, Tanihara H (2002) Proteoglycans in retina. Prog Retin Eye Res 21:429–447.

    CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087.

    CAS  PubMed  Google Scholar 

  • Isayama T, Hurst WJ, McLaughlin PJ, Zagon IS (1995) Ontogeny of the opioid growth factor, [Met5]-enkephalin, and its binding activity in the rat retina. Visual Neurosci 12:939–950.

    CAS  Google Scholar 

  • Isayama T, McLaughlin PJ, Zagon IS (1991) Endogenous opioids regulate cell proliferation in the retina of developing rat. Brain Res 544:79–85.

    CAS  PubMed  Google Scholar 

  • Isayama T, McLaughlin PJ, Zagon IS (1996) Ontogeny of preproenkephalin mRNA expression in the rat retina. Visual Neurosci 13:695–704.

    CAS  Google Scholar 

  • Ishi I, Shimizu T (2000) Platelet-activating factor receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 39:41–82.

    Google Scholar 

  • Izumi T, Shimizu T (1995) Platelet-activating factor receptor: gene expression and signal transduction. Biochim Biophys Acta 1259:317–333.

    PubMed  Google Scholar 

  • Jacobson M (1991) Developmental Neurobiology. Plenum Press, New York, 1–776.

    Google Scholar 

  • Jadhav AP, Cho S, Cepko CL (2006a) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A 103:18998–19003.

    CAS  PubMed  Google Scholar 

  • Jadhav AP, Mason HA, Cepko CL (2006b) Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133:913–923.

    CAS  PubMed  Google Scholar 

  • James J, Das AV, Rahnenfuhrer J, Ahmad I (2004) Cellular and molecular characterization of early and late retinal stem cells/progenitors: differential regulation of proliferation and context dependent role of Notch signaling. J Neurobiol 61:359–376.

    CAS  PubMed  Google Scholar 

  • Jaynes CD, Turner JE (2000) Isolation of a retinal pigment epithelial cell-derived fraction which promotes Müller cell proliferation. Dev Brain Res 120:267–271.

    CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45.

    CAS  PubMed  Google Scholar 

  • Jensen AM, Wallace VA (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124:363–371.

    CAS  PubMed  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946.

    CAS  PubMed  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163.

    CAS  PubMed  Google Scholar 

  • Jotwani G, Itoh K, Wadhwa S (1994) Immunohistochemical localization of tyrosine hydroxylase, substance P, neuropeptide-Y and leucine-enkephalin in developing human retinal amacrine cells. Dev Brain Res 77:285–289.

    CAS  Google Scholar 

  • Kaldis P (1999) The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 55:284–296.

    CAS  PubMed  Google Scholar 

  • Kang MK, Kang SK (2008) Interleukin-6 induces proliferation in adult spinal cord-derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation. Cell Prolif 41: 377–392.

    CAS  PubMed  Google Scholar 

  • Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474.

    PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–57.

    Google Scholar 

  • Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103: 1551–1560.

    CAS  PubMed  Google Scholar 

  • Kim IB, Lee EJ, Kim MK, Park DK, Chun MH (2000) Choline acetyltransferase-immunoreactive neurons in the developing rat retina. J Comp Neurol 427:604–616.

    CAS  PubMed  Google Scholar 

  • Kim IB, Park DK, Oh SJ, Chun MH (1998) Horizontal cells of the rat retina show choline acetyltransferase- and vesicular acetylcholine transporter-like immunoreactivities during early postnatal developmental stages. Neurosci Lett 253: 83–86.

    CAS  PubMed  Google Scholar 

  • Kolb H (1997) Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye 11:904–923.

    PubMed  Google Scholar 

  • Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187.

    CAS  PubMed  Google Scholar 

  • Korenjak M, Brehm A (2005) E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 15:520–527.

    CAS  PubMed  Google Scholar 

  • Koulen P (1999) Postnatal development of dopamine D1 receptor immunoreactivity in the rat retina. J Neurosci Res 56:397–404.

    CAS  PubMed  Google Scholar 

  • Kralj-Hans I, Tibber M, Jeffery G, Mobbs P (2006) Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinae. J Neurobiol 66:47–55.

    CAS  PubMed  Google Scholar 

  • Kriegstein AR, Götz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43.

    PubMed  Google Scholar 

  • Kriegstein AR, Noctor S, Martinez-Cerdeno M (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890.

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2008) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11.

    PubMed  Google Scholar 

  • Krysko DV, Vanden Berghe T, Parthoens E, D‘Herde K, Vandenabeele P (2008) Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol 442:307–341.

    PubMed  Google Scholar 

  • Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297.

    CAS  PubMed  Google Scholar 

  • Kubo F, Takeichi M, Nakagawa S 2003. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 130(3):587–598.

    CAS  PubMed  Google Scholar 

  • Kubo F, Nakagawa S (2008) Wnt signaling in retinal stem cells and regeneration. Dev Growth Differ 50(4):245–251.

    PubMed  Google Scholar 

  • Kubota R, Hokoc JN, Moshiri A, McGuire C, Reh TA (2002) A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Dev Brain Res 134:31–41.

    CAS  Google Scholar 

  • Kubrusly RC, Guimaraes MZ, Vieira AP, Hokoc JN, Casarini DE, de Mello MC, de Mello FG (2003) L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. J Neurochem 86:45–54.

    CAS  PubMed  Google Scholar 

  • Kubrusly RC, Ventura AL, de Melo Reis RA, Serra GC, Yamasaki EN, Gardino PF, de Mello MC, de Mello FG (2007) Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of beta1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem Int 50:211–218.

    CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337.

    CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372.

    CAS  PubMed  Google Scholar 

  • Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43.

    CAS  PubMed  Google Scholar 

  • Kumar S, Kahn MA, Dinh L, de Vellis J (1998) NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neurosci Res 54:754–765.

    CAS  PubMed  Google Scholar 

  • Kunchithapautham K, Rohrer B (2007) Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3:433–441.

    CAS  PubMed  Google Scholar 

  • Kuruvilla A, Pielop C, Shearer WT (1994) Platelet-activating factor induces the tyrosine phosphorylation and activation of phospholipase C-gamma 1, Fyn and Lyn kinases, and phosphatidylinositol 3-kinase in a human B cell line. J Immunol 153:5433–5442.

    CAS  PubMed  Google Scholar 

  • Kuwayama Y, Ishimoto I, Fukuda M, Shimiza Y, Shiosaka S, Inagaki S, Senba E, Sakanaka M, Takagi H, Takatsuki K, Hara Y, Kawai Y, Tohyama M (1982) Overall distribution of glucagon-like immunoreactivity in the chicken retina: an immunohistochemical study with flat-mounts. Invest Ophthalmol Vis Sci 22:681– 686.

    CAS  PubMed  Google Scholar 

  • Laasberg T (1990) Ca2(+)-mobilizing receptors of gastrulating chick embryo. Comp Biochem Physiol C 97:9–12.

    CAS  PubMed  Google Scholar 

  • Langman J, Guerrant RL, Freeman BG (1966) Behavior of neuro-epithelial cells during closure of the neural tube. J Comp Neurol 127:399–411.

    CAS  PubMed  Google Scholar 

  • Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6:931–942.

    CAS  PubMed  Google Scholar 

  • Layer PG (1991) Cholinesterases during development of the avian nervous system. Cell Mol Neurobiol 11:7–33.

    CAS  PubMed  Google Scholar 

  • Lee MY, Heo JS, Han HJ (2006) Dopamine regulates cell cycle regulatory proteins via cAMP, Ca(2+)/PKC, MAPKs, and NF-kappaB in mouse embryonic stem cells. J Cell Physiol 208:399–406.

    CAS  PubMed  Google Scholar 

  • Levine EM, Green ES (2004) Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin Cell Dev Biol 15:63–74.

    CAS  PubMed  Google Scholar 

  • Levine EM, Roelink H, Turner J, Reh TA (1997) Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci 17:6277–6288.

    Google Scholar 

  • Li, Y, Yang X, Ma C, Qiao J, Zhang C (2008) Necroptosis contributes to the NMDA-induced excitotoxicity in rat’s cultured cortical neurons. Neurosci Lett 447:120–123.

    CAS  PubMed  Google Scholar 

  • Liang Q, Li W, Zhou B (2008) Caspase-independent apoptosis in yeast. Biochim Biophys Acta 1783:1311–1319.

    CAS  PubMed  Google Scholar 

  • Liljekvist-Soltic I, Olofsson J, Johansson K (2008) Progenitor cell-derived factors enhance photoreceptor survival in rat retinal explants. Brain Res 1227:226–233.

    CAS  PubMed  Google Scholar 

  • Lillien L (1995) Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377:158–162.

    CAS  PubMed  Google Scholar 

  • Lillien L (1998) Neural progenitors and stem cells: mechanisms of progenitor heterogeneity. Curr Opin Neurobiol 8:37–44.

    CAS  PubMed  Google Scholar 

  • Lillien L, Cepko C (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115:253–266.

    CAS  PubMed  Google Scholar 

  • Lillien L, Wancio D (1998) Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol Cell Neurosci 10:296–308.

    CAS  Google Scholar 

  • Lin SC, Skapek SX, Papermaster DS, Hankin M, Lee EY (2001) The proliferative and apoptotic activities of E2F1 in the mouse retina. Oncogene 20:7073–7084.

    CAS  PubMed  Google Scholar 

  • Linden R (2000) The anti-death league: associative control of apoptosis in developing retinal tissue. Brain Res Rev 32: 146–158.

    CAS  PubMed  Google Scholar 

  • Linden, R. Reese BE (2006) Programmed cell death. In: Retinal Development Evelyn Sernagor; Stephen Eglen; William A. Harris; Rachel Wong. (Org.), p. 208–241. Cambridge University Press, Cambridge.

    Google Scholar 

  • Linden R, Cavalcante LA, Barradas PC (1986) Mononuclear phagocytes in the retina of developing rats. Histochemistry 85:335–339.

    CAS  PubMed  Google Scholar 

  • Linden R, Martins RA, Silveira MS (2005) Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 24:457–491.

    CAS  PubMed  Google Scholar 

  • Linden R, Rehen SK, Chiarini LB (1999) Apoptosis in developing retinal tissue. Prog Retin Eye Res 18:133–165.

    CAS  PubMed  Google Scholar 

  • Liu B, Nakashima S, Kanoh H, Takano T, Shimizu T, Nozawa Y (1994) Activation of phospholipase D in Chinese hamster ovary cells expressing platelet-activating factor receptor. J Biochem 116:882–891.

    CAS  PubMed  Google Scholar 

  • Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2: 109–118.

    CAS  PubMed  Google Scholar 

  • Locker M, Agathocleous M, Amato MA, Parain K, Harris WA, Perron M (2006) Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev 20:3036–3048.

    CAS  PubMed  Google Scholar 

  • Lograno MD, Tricarico D, Masciopinto V, Scuderl AC (2000) Specific binding of nicergoline on an alpha1-like adrenoreceptor in the rat retina. J Pharm Pharmacol 52:207–211.

    CAS  PubMed  Google Scholar 

  • Lombardini JB (1991) Taurine: retinal function. Brain Res Brain Res Rev 16:151–169.

    CAS  PubMed  Google Scholar 

  • Lonze BE, Ginty D (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623.

    CAS  PubMed  Google Scholar 

  • Lorenzo HK, Susin SA, Penninger J, Kroemer G (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6:516–524.

    CAS  PubMed  Google Scholar 

  • Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 69:287–312.

    CAS  PubMed  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298.

    CAS  PubMed  Google Scholar 

  • Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H (2008) Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast. J Cell Sci 121:2671–2684.

    CAS  PubMed  Google Scholar 

  • Low CP, Yang H (2008) Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1783:1335–1349.

    CAS  PubMed  Google Scholar 

  • Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci 23:2239–2250.

    CAS  PubMed  Google Scholar 

  • Lunyak VV, Rosenfeld MG (2008) Epigenetic regulation of stem cell fate. Hum Mol Genet 17:R28–R36.

    CAS  PubMed  Google Scholar 

  • Ma C, Papermaster D, Cepko CL (1998) A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc Natl Acad Sci 95:9938–9943.

    CAS  PubMed  Google Scholar 

  • Maandag EC, van der Valk M, Vlaar M, Feltkamp C, O’Brien J, van Roon M (1994) Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J 13:4260–4268.

    CAS  PubMed  Google Scholar 

  • MacLaren RE, Pearson RA (2007) Stem cell therapy and the retina. Eye 21:1352–1359.

    CAS  PubMed  Google Scholar 

  • MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, Jacks T (2004) Cell type-specific effects of Rb deletion in the murine retina. Genes Dev 18:1681–1694.

    CAS  PubMed  Google Scholar 

  • Makman MK, Dvorkin B (1997) Presence of nociceptin (orphanin FQ) receptors in rat retina: comparison with receptors in striatum. Eur J Pharmacol 338:171–176.

    CAS  PubMed  Google Scholar 

  • Marigo V (2007) Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration. Cell Cycle 6:652–655.

    CAS  PubMed  Google Scholar 

  • Marquardt T (2003) Transcriptional control of neuronal diversification in the retina. Prog Retin Eye Res 22:567–577.

    CAS  PubMed  Google Scholar 

  • Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25:32–38.

    CAS  PubMed  Google Scholar 

  • Martins RA, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60.

    CAS  PubMed  Google Scholar 

  • Martin-Martinelli E, Simon A, Vigny A, Nguyen-Legros J (1989) Postnatal development of tyrosine-hydroxylase hydroxylaseimmunoreactive cells in the rat retina. Morphology and distribution. Dev Neurosci 11:11–25.

    CAS  PubMed  Google Scholar 

  • Martins RA, Linden R, Dyer MA (2006) Glutamate regulates retinal progenitors cells proliferation during development. Eur J Neurosci 24:969–980.

    PubMed  Google Scholar 

  • Martins RA, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60.

    CAS  PubMed  Google Scholar 

  • Martín-Partido G, Rodríguez-Gallardo L, Alvarez IS, Navascués J (1988) Cell death in the ventral region of the neural retina during the early development of the chick embryo eye. Anat Rec 222:272–281.

    PubMed  Google Scholar 

  • Masai I, Yamaguchi M, Tonou-Fujimori N, Komori A, Okamoto H (2005) The hedgehog-PKA pathway regulates two distinct steps of the differentiation of retinal ganglion cells: the cell-cycle exit of retinoblasts and their neuronal maturation. Development 132:1539–1553.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166.

    CAS  PubMed  Google Scholar 

  • McCabe KL, Gunther EC, Reh TA (1999) The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 126: 5713–5724.

    CAS  PubMed  Google Scholar 

  • McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125:3967–3975.

    CAS  PubMed  Google Scholar 

  • McKinnon LA, Nathanson NM (1995) Tissue-specific regulation of muscarinic acetylcholine receptor expression during embryonic development. J Biol Chem 270:20636–20642.

    CAS  PubMed  Google Scholar 

  • Mione MC, Cavanagh JF, Harris B, Parnavelas JG (1997) Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J Neurosci 17: 2018–2029.

    CAS  PubMed  Google Scholar 

  • Miranda-Contreras L, Benitez-Diaz PR, Mendoza-Briceno RV, Delgado-Saez MC, Palacios-Pru EL (1999) Levels of amino acid neurotransmitters during mouse cerebellar neurogenesis and in histotypic cerebellar cultures. Dev Neurosci 21: 147–158.

    CAS  PubMed  Google Scholar 

  • Miranda-Contreras L, Mendoza-Briceno RV, Palacios-Pru EL (1998) Levels of monoamine and amino acid neurotransmitters in the developing male mouse hypothalamus and in histotypic hypothalamic cultures. Int J Dev Neurosci 16:403–412.

    CAS  PubMed  Google Scholar 

  • Miranda-Contreras L, Ramirez-Martens LM, Benitez-Diaz PR, Pena-Contreras ZC, Mendoza-Briceno RV, Palacios-Pru EL (2000) Levels of amino acid neurotransmitters during mouse olfactory bulb neurogenesis and in histotypic olfactory bulb cultures. Int J Dev Neurosci 18:83–91.

    CAS  PubMed  Google Scholar 

  • Mitchell CK, Huang B, Redburn-Johnson DA (1999) GABA(A) receptor immunoreactivity is transiently expressed in the developing outer retina. Vis Neurosci 16:1083–1088.

    CAS  PubMed  Google Scholar 

  • Mitchell CK, Redburn DA (1996) GABA and GABA-A receptors are maximally expressed in association with cone synaptogenesis in neonatal rabbit retina. Dev Brain Res 95:63–71.

    CAS  Google Scholar 

  • Miyata T (2008) Development of three-dimensional architecture of the neuroepithelium: role of pseudostratification and cellular ‘community’. Dev Growth Differ 50:S105–S112.

    PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741.

    CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kuramochi H, Ogawa M (2002) Visualization of cell cycling by an improvement in slice culture methods. J Neurosci Res 69:861–868.

    CAS  PubMed  Google Scholar 

  • Montrucchio G, Lupia E, Battaglia E, Del Sorbo L, Boccellino M, Biancone L, Emanuelli G, Camussi G (2000) Platelet-activating factor enhances vascular endothelial growth factor-induced endothelial cell motility and neoangiogenesis in a murine matrigel model. Arterioscler Thromb Vasc Biol 20:80–88.

    CAS  PubMed  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291.

    CAS  PubMed  Google Scholar 

  • Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093.

    CAS  PubMed  Google Scholar 

  • Murphy SN, Miller RJ (1989) Two distinct quisqualate receptors regulate Ca2+ homeostasis in hippocampal neurons in vitro. Mol Pharmacol 35:671–680.

    CAS  PubMed  Google Scholar 

  • Müller F, Albert S, Blader P, Fischer N, Hallonet M, Strahle U (2000) Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development 127:3889–3897.

    PubMed  Google Scholar 

  • Nagahara H, Ezhevsky SA, Vocero-Akbani AM, Kaldis P, Solomon MJ, Dowdy SF (1999) Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proc Natl Acad Sci U S A 96: 14961–14966.

    CAS  PubMed  Google Scholar 

  • Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25: 649–658.

    PubMed  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loy D, Nakayama K (1996) Mice lacking p27Kip1 display increased body side, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell 85:707–720.

    CAS  PubMed  Google Scholar 

  • Neves DD, Rehen SK, Linden R (2001) Differentiation-dependent sensitivity to cell death induced in the developing retina by inhibitors of the ubiquitin-proteasome proteolytic pathway. Eur J Neurosci 13:1938–1944.

    CAS  PubMed  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21: 2215–2223.

    CAS  PubMed  Google Scholar 

  • Nguyen-Legros J, Vigny A, Gay M (1983) Post-natal development of TH-like immunoreactivity in the rat retina. Exp Eye Res 37:23–32.

    CAS  PubMed  Google Scholar 

  • Nickerson PEB, Da Silva N, Myers T, Stevens K, Clarke DB (2008) Neural progenitor potential in cultured Müller glia: effects of passaging and exogenous growth factor exposure. Brain Res 1230:1–12.

    CAS  PubMed  Google Scholar 

  • Nishi S, Minota S, Karczmar AG (1974) Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. Neuropharmacology 13:215–219.

    CAS  PubMed  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060.

    CAS  PubMed  Google Scholar 

  • Njaine B, Martins RAP, Santiago MF, Linden R, Silveira MS (2009) Pituitary adenylyl cyclase-activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. Submitted.

    Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ, (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84:5487–5491.

    CAS  PubMed  Google Scholar 

  • Nunes PH, Calaza Kda C, Albuquerque LM, Fragel-Madeira L, Sholl-Franco A, Ventura AL (2007) Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina. Int J Dev Neurosci 25:499–508.

    CAS  PubMed  Google Scholar 

  • Oh S, D’angelo I, Lee E, Chun M, Brecha NC (2002) Distribution and synaptic connectivity of neuropeptide Y-immunoreactive amacrine cells in the rat retina. J Comp Neurol 446:219–234.

    CAS  PubMed  Google Scholar 

  • Ohta K, Ito A, Tanaka H (2008) Neuronal stem/progenitor cells in the vertebrate eye. Dev Growth Differ 50:253–259.

    PubMed  Google Scholar 

  • Oku H, Ikeda T, Honma Y, Sotozono C, Nishida K, Nakamura Y, Kida T, Kinoshita S (2002) Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Muller cells. Ophthalmic Res 34:38–42.

    CAS  PubMed  Google Scholar 

  • Olianas MC, Ingianni A, Sogos V, Onali P (1997) Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors and PACAP in human retina. J Neurochem 69:1213–1218.

    CAS  PubMed  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101:13654–13659.

    CAS  PubMed  Google Scholar 

  • Oppenheim RW, Blomgren K, Ethell DW, Koike M, Komatsu M, Prevette D, Roth KA, Uchiyama Y, Vinsant S, Zhu C (2008) Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy. J Neurosci 28: 1490–1497.

    CAS  PubMed  Google Scholar 

  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219.

    CAS  PubMed  Google Scholar 

  • Osborne NN, Patel S, Vigny A (1984) Dopaminergic neurones in various retinas and the postnatal development of tyrosine-hydroxylase immunoreactivity in the rabbit retina. Histochemistry 80:389–393.

    CAS  PubMed  Google Scholar 

  • Otaegi G, de Pablo F, Vicario-Abejón C, de la Rosa EJ (2007) Retinal and olfactory bulb precursor cells show distinct responses to FGF-2 and laminin. Cell Biol Int 31:752–758.

    CAS  PubMed  Google Scholar 

  • Otteson DC, Cirenza PF, Hitchcock PF (2002) Persistent neurogenesis in the teleost retina: evidence for regulation by the growth-hormone/insulin-like growth factor-I axis. Mech Dev 117:137–149.

    CAS  PubMed  Google Scholar 

  • Paes-De-Carvalho R (2002) Adenosine as a signaling molecule in the retina: biochemical and developmental aspects. An Acad Bras Cienc 74:437–451.

    CAS  PubMed  Google Scholar 

  • Page AM, Hieter P (1997) The anaphase promoting complex. In: Checkpoint Controls and Cancer (Kastan MB, ed.), pp. 133–150. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Patel A, McFarlane S (2000) Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis. Dev Biol 222:170–180.

    CAS  PubMed  Google Scholar 

  • Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H, Drake C, Kandel ER (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32:123–140.

    CAS  PubMed  Google Scholar 

  • Pearson R, Catsicas M, Becker D, Mobbs P (2002) Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. J Neurosci 22:7569–7579.

    CAS  PubMed  Google Scholar 

  • Pearson RA, Dale N, Llaudet E, Mobbs P (2005a) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744.

    CAS  PubMed  Google Scholar 

  • Pearson RA, Lüneborg NL, Becker DL, Mobbs P (2005b) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 25:10803–10814.

    CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Bennett MV, Zukin RS (1992) Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 144:65–69.

    CAS  PubMed  Google Scholar 

  • Pootanakit K, Brunken WJ (2000) 5-HT(1A) and 5-HT(7) receptor expression in the mammalian retina. Brain Res 875:152–156.

    CAS  PubMed  Google Scholar 

  • Pootanakit K, Brunken WJ (2001) Identification of 5-HT(3A) and 5-HT(3B) receptor subunits in mammalian retinae: potential pre-synaptic modulators of photoreceptors. Brain Res 896:77–85.

    CAS  PubMed  Google Scholar 

  • Pootanakit K, Prior KJ, Hunter DD, Brunken WJ (1999) 5-HT2a receptors in the rabbit retina: potential presynaptic modulators. Visual Neurosci 16:221–230.

    CAS  Google Scholar 

  • Pourcho RG (1996) Neurotransmitters in the retina. Curr Eye Res 15:797–803.

    CAS  PubMed  Google Scholar 

  • Pow DV, Crook DK, Wong RO (1994) Early appearance and transient expression of putative amino acid neurotransmitters and related molecules in the developing rabbit retina: an immunocytochemical study. Vis Neurosci 11: 1115–1134.

    CAS  PubMed  Google Scholar 

  • Prada C, Puga J, Pérez-Méndez L, López R, Ramírez G (1991) Spatial and temporal patterns of neurogenesis in the chick retina. Eur J Neurosci 3:559–569.

    PubMed  Google Scholar 

  • Prezeau L, Carrette J, Helpap B, Curry K, Pin JP, Bockaert J (1994) Pharmacological characterization of metabotropic glutamate receptors in several types of brain cells in primary cultures. Mol Pharmacol 45:570–577.

    CAS  PubMed  Google Scholar 

  • Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 84:156–160.

    CAS  PubMed  Google Scholar 

  • Pruss RM, Akeson RL, Racke MM, Wilburn JL (1991) Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7: 509–518.

    CAS  PubMed  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400.

    CAS  PubMed  Google Scholar 

  • Rapaport DH, Robinson SR, Stone J (1984) Cell movement and birth in the developing cat retina. In: Development of Visual Pathways in Mammals (Stone J, ed.), pp. 23–38. Alan R. Liss, New York.

    Google Scholar 

  • Rapaport DH, Robinson SR, Stone J (1985) Cytogenesis in the developing retina of the cat. Aust N Z J Ophthalmol 13: 113–124.

    CAS  PubMed  Google Scholar 

  • Rapaport DH, Stone J (1983) The topography of cytogenesis in the developing retina of the cat. J Neurosci 3:1824–1834.

    CAS  PubMed  Google Scholar 

  • Rapaport DH, Vietri AJ (1991) Identity of cells produced by two stages of cytogenesis in the postnatal cat retina. J Comp Neurol 312:341–352.

    CAS  PubMed  Google Scholar 

  • Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2008) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63.

    PubMed  Google Scholar 

  • Reh TA, Fischer AJ (2006) Retinal stem cells. Methods Enzymol 419:52–73.

    CAS  PubMed  Google Scholar 

  • Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36:206–220.

    CAS  PubMed  Google Scholar 

  • Rehen SK, Cid M, Fragel-Madeira L, Linden R (2002) Differential effects of cyclin-dependent kinase blockers upon cell death in the developing retina. Brain Res 947:78–83.

    CAS  PubMed  Google Scholar 

  • Rehen SK, Diniz DM, Fragel-Madeira L, Brito LRG, Linden R (1999) Selective sensitivity of early postmitotic cells to apoptosis induced by inhibition of protein synthesis. Eur J Neurosci 11:349–356.

    Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413.

    CAS  PubMed  Google Scholar 

  • Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH (1998) p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 12:1599–1609.

    CAS  PubMed  Google Scholar 

  • Rodgers EE, Theibert AB (2002) Functions of PI 3-kinase in development of the nervous system. Int J Dev Neurosci 20:187–197.

    CAS  PubMed  Google Scholar 

  • Roegiers F, Jan YN (2004) Asymmetric cell division. Curr Opin Cell Biol 16:195–205.

    CAS  PubMed  Google Scholar 

  • Rompani SB, Cepko CL (2008) Retinal progenitor cells can produce restricted subsets of horizontal cells. Proc Natl Acad Sci U S A 105:192–197.

    CAS  PubMed  Google Scholar 

  • Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450.

    CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194.

    CAS  PubMed  Google Scholar 

  • Russell C (2003) The roles of hedgehogs and fibroblast growth factors in eye development and retinal cell rescue. Vision Res 43:899–912.

    CAS  PubMed  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35.

    CAS  PubMed  Google Scholar 

  • Ryu JK, Choi HB, Hatori K, Heisel RL, Pelech SL, McLarnon JG, Kim SU (2003) Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J Neurosci Res 72:352–362.

    CAS  PubMed  Google Scholar 

  • Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401:168–173.

    CAS  PubMed  Google Scholar 

  • Saito K, Kawaguchi A, Kashiwagi S, Yasugi S, Ogawa M, Miyata T (2003) Morphological asymmetry in dividing retinal progenitor cells. Develop Growth Differ 45:219–229.

    Google Scholar 

  • Sakaki Y, Fukuda Y, Yamashita M (1996) Muscarinic and purinergic Ca2+ mobilizations in the neural retina of early embryonic chick. Int J Dev Neurosci 14:691–699.

    CAS  PubMed  Google Scholar 

  • Sampath D, and Plunkett W (2001) Design of new anticancer therapies targeting cell cycle checkpoint pathways. Curr Opin Oncol 13(6):484–490

    Google Scholar 

  • Sanches G, de Alencar LS, Ventura AL (2002) ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int J Dev Neurosci 20:21–27.

    CAS  PubMed  Google Scholar 

  • Sanchez I, Dynlacht BD (2005) New insights into cyclins, CDK, and cell cycle control. Semin Cell Dev Biol 16:311–321.

    CAS  PubMed  Google Scholar 

  • Santella L, Kyozuka K, De Riso L, Carafoli E (1998) Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 23:123–130.

    CAS  PubMed  Google Scholar 

  • Santos PF, Caramelo OL, Carvalho AP, Duarte CB (1999) Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J Neurobiol 41:340–348.

    CAS  PubMed  Google Scholar 

  • Sassoe-Pognetto M, Wassle H (1997) Synaptogenesis in the rat retina: subcellular localization of glycine receptors, GABA(A) receptors, and the anchoring protein gephyrin. J Comp Neurol 381:158–174.

    CAS  PubMed  Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405.

    Google Scholar 

  • Sauer ME, Chittenden AC (1959) Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: evidence for intermitotic migration of nuclei. Exp Cell Res 16:1–6.

    CAS  PubMed  Google Scholar 

  • Sauer ME, Walker BE (1959) Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560.

    CAS  PubMed  Google Scholar 

  • Schäfers M, Sorkin L (2008) Effect of cytokines on neuronal excitability. Neurosci Lett 437:188–193.

    PubMed  Google Scholar 

  • Seki T, Shioda S, Nakai Y, Arimura A, Koide R (1998) Distribution and ultrastructural localization of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor in the rat retina. Ann N Y Acad Sci 865:408–411.

    CAS  PubMed  Google Scholar 

  • Seki T, Shioda S, Ogino D, Nakai Y, Arimura A, Koide R (1997) Distribution and ultrastructural localization of a receptor for pituitary adenylate cyclase activating polypeptide and its mRNA in the rat retina. Neurosci Lett 238:127–130.

    CAS  PubMed  Google Scholar 

  • Shao-Min Zhang S, Liu M-G, Kano A, Zhang C, Fu X-Y, Barnstable CJ (2005) STAT3 activation in response to growth factors or cytokines participates in retina precursor proliferation. Exp Eye Res 81:103–115.

    Google Scholar 

  • Sharma RK, Johnson DA (2000) Molecular signals for development of neuronal circuitry in the retina. Neurochem Res 25:1257–1263.

    CAS  PubMed  Google Scholar 

  • Shelke RR, Lakshmana MK, Ramamohan Y, Raju TR (1997) Levels of dopamine and noradrenaline in the developing of retina – effect of light deprivation. Int J Dev Neurosci 15:139–143.

    CAS  PubMed  Google Scholar 

  • Shen Y, Liu XL, Yang XL (2006) N-methyl-D-aspartate receptors in the retina. Mol Neurobiol 34:163–179.

    CAS  PubMed  Google Scholar 

  • Sherr CJ (1993) Mammalian G1 Cyclins. Cell 73:1059–1065.

    CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163.

    CAS  PubMed  Google Scholar 

  • Shibuya EK (2003) G2 cell cycle arrest-a direct link between PKA and Cdc25C. Cell Cycle 2:39–41.

    CAS  PubMed  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168.

    CAS  PubMed  Google Scholar 

  • Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL (1993) Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci U S A 90:4986–4990.

    CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    CAS  PubMed  Google Scholar 

  • Sidman RL (1961) Histogenesis of mouse retina studied with thymidine-H3. In: The Structure of the Eye (Smelser GK, ed.), pp. 487–506. Academic Press, London.

    Google Scholar 

  • Silva AG, Campello-Costa P, Linden R, Sholl-Franco A (2008) Interleukin-4 blocks proliferation of retinal progenitor cells and increases rod photoreceptor differentiation through distinct signaling pathways. J Neuroimmunol 196:82–93.

    PubMed  Google Scholar 

  • Silveira dos Santos Bredariol A, Hamassaki-Britto DE (2001) Ionotropic glutamate receptors during the development of the chick retina. J Comp Neurol 441:58–70.

    CAS  Google Scholar 

  • Silveira MS, Costa MR, Bozza M, Linden R (2002) Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J Biol Chem 277:16075–16080.

    CAS  PubMed  Google Scholar 

  • Silver J, Robb RM (1979) Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Dev Biol 68:175–190.

    CAS  PubMed  Google Scholar 

  • Stenkamp DL, Frey RA, Prabhudesai SN, Raymond PA (2000) Function for hedgehog genes in zebrafish retinal development. Dev Biol 220:238–252.

    CAS  PubMed  Google Scholar 

  • Stewart ZA, Westfall MD, Pietenpol JA (2003) Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 24:139–145.

    CAS  PubMed  Google Scholar 

  • Sturman JA (1988) Taurine in development. J Nutr 118: 1169–1176.

    CAS  PubMed  Google Scholar 

  • Sucher NJ, Kohler K, Tenneti L, Wong HK, Grunder T, Fauser S, Wheeler-Schilling T, Nakanishi N, Lipton SA, Guenther E (2003) N-methyl-D-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects. Invest Ophthalmol Vis Sci 44:4451–4456.

    PubMed  Google Scholar 

  • Sugioka M, Fukuda Y, Yamashita M (1996) Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina. J Physiol 493:855–863.

    CAS  PubMed  Google Scholar 

  • Sugioka M, Zhou WL, Hofmann HD, Yamashita M (1999a) Ca2+ mobilization and capacitative Ca2+ entry regulate DNA synthesis in cultured chick retinal neuroepithelial cells. Int J Dev Neurosci 17:163–172.

    CAS  PubMed  Google Scholar 

  • Sugioka M, Zhou W, Hofmann H, Yamashita M (1999b) Involvement of P1 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Devl Neurosci 17:135–144.

    CAS  Google Scholar 

  • Sun H, Chang Y, Schweers B, Dyer MA, Zhang X, Hayward SW, Goodrich DW (2006) An E2F binding-deficient Rb1 protein partially rescues developmental defects associated with Rb1 nullizygosity. Mol Cell Biol 26:1527–1537.

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neurogenesis. J Neurosci 16:6183–6196.

    CAS  PubMed  Google Scholar 

  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K, Motoyama N (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205.

    CAS  PubMed  Google Scholar 

  • Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150.

    PubMed  Google Scholar 

  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726.

    CAS  PubMed  Google Scholar 

  • Taomoto M, McLeod DS, Merges C, Lutty GA (2000) Localization of adenosine A2a receptor in retinal development and oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 41:230–243.

    CAS  PubMed  Google Scholar 

  • Tappaz ML (2004) Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 29:83–96.

    CAS  PubMed  Google Scholar 

  • Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G (2008) Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 445:29–76.

    CAS  PubMed  Google Scholar 

  • Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18: 765–810.

    CAS  PubMed  Google Scholar 

  • Thurston AW Jr, Rhee SG, Shukla SD (1993) Role of guanine nucleotide-binding protein and tyrosine kinase in platelet-activating factor activation of phospholipase C in A431 cells: proposal for dual mechanisms. J Pharmacol Exp Ther 266:1106–1112.

    CAS  PubMed  Google Scholar 

  • Tibber MS, Whitmore AV, Jeffery G (2006) Cell division and cleavage orientation in the developing retina are regulated by L-DOPA. J Comp Neurol 496:369–381.

    PubMed  Google Scholar 

  • Tornqvist K, Ehinger B (1983) Glucagon immunoreactive neurons in the retina of different species. Graefes Arch Clin Exp Ophthalmol 220:1–5.

    CAS  PubMed  Google Scholar 

  • Tornqvist K, Loren I, Hakanson R, Sundler F (1981) Peptide-containing neurons in the chicken retina. Exp Eye Res 33: 55–64.

    CAS  PubMed  Google Scholar 

  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036.

    CAS  PubMed  Google Scholar 

  • Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845.

    CAS  PubMed  Google Scholar 

  • Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K (2006) Cell cycle progression is required for nuclear migration of neural progenitor cells. Brain Res 1088:57–67.

    CAS  PubMed  Google Scholar 

  • Upton AL, Salichon N, Lebrand C, Ravary A, Blakely R, Seif I,Gaspar P (1999) Excess of serotonin (5-HT) alters the segregation of ipsilateral and contralateral retinal projections in monoamine oxidase A knock-outmice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 19: 7007–7024.

    CAS  PubMed  Google Scholar 

  • Vallières L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492.

    PubMed  Google Scholar 

  • van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98: 197–220.

    CAS  PubMed  Google Scholar 

  • Vela JM, Molina-Holgado E, Arévalo-Martín A, Almazán G, Guaza C (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20:489–502.

    CAS  PubMed  Google Scholar 

  • Versaux-Botteri C, Pochet R, Nguyen-Legros J (1989) Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina. Invest Ophthalmol Vis Sci 30:652–659.

    CAS  PubMed  Google Scholar 

  • Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247:1–15.

    CAS  PubMed  Google Scholar 

  • von Bartheld CS (1998) Neurotrophins in the developing and regenerating visual system. Histol Histopathol 13:437–459.

    CAS  PubMed  Google Scholar 

  • von Bartheld CS, Byers MR, Williams R, Bothwell M (1996) Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature 379: 830–833.

    CAS  PubMed  Google Scholar 

  • Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P (2007) Embryonic stem cells and retinal repair. Mech Dev 124: 807–829.

    CAS  PubMed  Google Scholar 

  • Wallace VA (2008) Proliferative and cell fate effects of hedgehog signaling in the vertebrate retina. Brain Res 1192:61–75.

    CAS  PubMed  Google Scholar 

  • Walworth NC (2000) Cell cycle checkpoint kinases: checking in on the cell cycle. Curr Opin Cell Biol 12:697–704.

    CAS  PubMed  Google Scholar 

  • Wamsley JK, Palacios JM, Kuhar MJ (1981) Autoradiographic localization of opioid receptors in the mammalian retina. Neurosci Lett 27:19–24.

    CAS  PubMed  Google Scholar 

  • Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, Xu XM, Lu P (2007) Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36: 343–354.

    PubMed  Google Scholar 

  • Waschek JA, Dicicco-Bloom E, Nicot A, Lelievre V (2006) Hedgehog signaling new targets for GPCRs coupled to cAMP and protein kinase A. Ann N Y Acad Sci 1070: 120–128.

    CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330.

    CAS  PubMed  Google Scholar 

  • Whitaker M, Larman MG (2001) Calcium and mitosis. Semin Cell Dev Biol 12:53–58.

    CAS  PubMed  Google Scholar 

  • Willer GB, Lee VM, Gregg RG, Link BA (2005) Analysis of the zebrafish perplexed mutation reveals tissue-specific roles for de novo pyrimidine synthesis during development. Genetics 170:1827–1837.

    CAS  PubMed  Google Scholar 

  • Woldemussie E, Wijono M, Pow D (2007) Localization of alpha 2 receptors in ocular tissues. Vis Neurosci 24:745–756.

    PubMed  Google Scholar 

  • Wong RO (1995a) Cholinergic regulation of [Ca2+]i during cell division and differentiation in the mammalian retina. J Neurosci 15:2696–2706.

    CAS  PubMed  Google Scholar 

  • Wong RO (1995b) Effects of glutamate and its analogs on intracellular calcium levels in the developing retina. Vis Neurosci 12:907–917.

    CAS  PubMed  Google Scholar 

  • Wu DK, Cepko CL (1993) Development of dopaminergic neurons is insensitive to optic nerve section in the neonatal rat retina. Dev Brain Res 74:253–260.

    CAS  Google Scholar 

  • Wu Y, Cutting GR (2001) Developmentally regulated expression of GABA receptor rho1 and rho2 subunits, L7 and cone-rod homeobox (CRX) genes in mouse retina. Brain Res 912: 1–8.

    CAS  PubMed  Google Scholar 

  • Wymann MP, Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436:127–150.

    CAS  PubMed  Google Scholar 

  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H (2003) Chk1 mediates S and G2 arrests through CDC25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773.

    CAS  PubMed  Google Scholar 

  • Yamasaki EN, Barbosa VD, De Mello FG, Hokoc JN (1999) GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. Int J Dev Neurosci 17:201–213.

    CAS  PubMed  Google Scholar 

  • Yamashita M, Fukuda Y (1993a) Calcium channels and GABA receptors in the early embryonic chick retina. J Neurobiol 24:1600–1614.

    CAS  PubMed  Google Scholar 

  • Yamashita M, Yoshimoto Y, Fukuda Y (1994) Muscarinic acetylcholine responses in the early embryonic chick retina. J Neurobiol 25:1144–1153.

    CAS  PubMed  Google Scholar 

  • Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150.

    CAS  PubMed  Google Scholar 

  • Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R (2006) Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133:1367–1378.

    CAS  PubMed  Google Scholar 

  • Yeo GW, Coufal N, Aigner S, Winner B, Scolnick JA, Marchetto MC, Muotri AR, Carson C, Gage FH (2008) Multiple layers of molecular controls modulate self-renewal and neuronal lineage specification of embryonic stem cells. Hum Mol Genet 17:R67–R75.

    CAS  PubMed  Google Scholar 

  • Yew DT, Luo CB, Zheng DR, Guan YL, Tsang D, Stadlin A (1991) Immunohistochemical localization of substance P, enkephalin and serotonin in the developing human retina. J Hirnforsch 32:61–67.

    CAS  PubMed  Google Scholar 

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750.

    CAS  PubMed  Google Scholar 

  • Yoshikawa K (2000) Cell cycle regulators in neural stem cells and postmitotic neurons. Neurosci Res 37:1–14.

    CAS  PubMed  Google Scholar 

  • Young RW (1985a) Cell proliferation during postnatal development of the retina in the mouse. Brain Res 353:229–239.

    CAS  PubMed  Google Scholar 

  • Young RW (1985b) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205.

    CAS  PubMed  Google Scholar 

  • Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41:867–879.

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249.

    CAS  PubMed  Google Scholar 

  • Zarbin MA, Wamsley JK, Palacios JM, Kuhar MJ (1986) Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic and muscarinic cholinergic receptors in the rat, monkey and human retina. Brain Res 374:75–92.

    CAS  PubMed  Google Scholar 

  • Zezula J, Freissmuth M (2008) The A2A-adenosine receptor: a GPCR with unique features? Br J Pharmacol 153:S184–S190.

    CAS  PubMed  Google Scholar 

  • Zhang H, Ching S, Chen Q, Li Q, An Y, Quan N (2008) Localized inflammation in peripheral tissue signals the CNS for sickness response in the absence of interleukin-1 and cyclooxygenase-2 in the blood and brain. Neuroscience 157:895–907.

    CAS  PubMed  Google Scholar 

  • Zhang J, Gray J, Wu L, Leone G, Rowan S, Cepko CL, Zhu X, Craft CM, Dyer MA (2004a) Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 36:351–360.

    PubMed  Google Scholar 

  • Zhang J, Schweers B, Dyer MA (2004b) The first knockout mouse model of retinoblastoma. Cell Cycle 3:952–959.

    CAS  PubMed  Google Scholar 

  • Zhang L, Spigelman I, Carlen PL (1991) Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J Physiol 444:25–49.

    CAS  PubMed  Google Scholar 

  • Zhao S, Barnstable CJ (1996) Differential effects of bFGF on development of the rat retina. Brain Res 723:169–176.

    CAS  PubMed  Google Scholar 

  • Zhao JJ, Lemke G (1998) Selective disruption of neuregulin-1 function in vertebrate embryos using ribozyme-tRNA transgenes. Development 125:1899–1907.

    CAS  PubMed  Google Scholar 

  • Zhu CY, Shukla SD (1993) Increased tyrosine kinase activity in pp60c-src immunoprecipitate from platelet activating factor stimulated human platelets: in vitro phosphorylation of a synthetic peptide. Life Sci 53:175–183.

    CAS  PubMed  Google Scholar 

  • Zygar CA, Colbert S, Yang D, Fernald RD (2005) IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina. Brain Res Dev Brain Res 154:91–100.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Linden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Linden, R. et al. (2010). Tissue Biology of Proliferation and Cell Death Among Retinal Progenitor Cells. In: Ulrich, H. (eds) Perspectives of Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3375-8_13

Download citation

Publish with us

Policies and ethics