Skip to main content

Neuron-Astroglial Interactions in Cell Fate Commitment in the Central Nervous System

  • Chapter
  • First Online:
  • 660 Accesses

Abstract

Until about 100 years ago, astroglial cells were regarded solely as passive components of the nervous system. During the past few years, however, increasing knowledge of these cells has completely changed this scenario: rather than mere inert “brain glue”, astroglial cells are now considered active partners of neurons, and they seem to be much more actively involved in brain function than was formerly thought. Recent evidence shows that astroglia, in addition to their previously known roles in neurotransmitter clearance, ion buffering, and neuronal trophic support, are also involved in other functions, such as synapse development and neurogenesis. In this review, we will focus on the role of astroglial cells, mainly radial glia and astrocytes, in several events of nervous system development such as cell fate commitment, neuronal and astrocyte maturation, and synapse formation. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership. Finally, we will briefly discuss the emerging view of astrocytes as essential actors in neurodegenerative diseases and neurological disorders, and how a better understanding of glial development might open new avenues to develop therapeutic approaches to these pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic Lateral Sclerosis

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid

BLBP:

brain lipid-binding protein

BMP:

bone morphogenic protein

BrdU:

bromodeoxyuridine

CNTF:

ciliary neurotrophic factor

CT-1:

Cardiotrophin-1

E:

embryonic day

ECM:

extracellular matrix

EGF:

epidermal growth factor

EGL:

external granular layer

FGF:

fibroblast growth factor

β-Gal:

β-galactosidase

GFAP:

glial fibrillary acidic protein

GFP:

green fluorescent protein

GLAST:

astrocyte-specific glutamate-aspartate transporter

GLT-1:

glutamate transporter-1

IGL:

internal granular layer

iGlureceptor:

ionotrophic glutamate receptor

IL-6:

interleukin-6

LGE:

lateral ganglionic eminence

LIF:

leukemia inhibitor factor

LIFRβ:

leukemia inhibitor factor receptor beta

LPA:

lysophosphatidic acid

MAPK:

mitogen-activated protein kinase

MGE:

medial ganglionic eminence

mGlu receptor:

metabotropic glutamate receptor

NGF:

nerve growth factor

NMDA:

N-methyl-d-aspartate

NMJ:

neuromuscular junction

NPC:

neural progenitor cell(s)

NRG:

neuregulin(s)

NS:

nervous system

NSC:

neural stem cell(s)

PI3-K:

phosphatidylinositol 3-K

PNS:

peripherical nervous system

RA:

retinoic acid

RG:

radial glia

RGC:

retinal ganglion cells

SGZ:

subgranular zone

SVZ:

subventricular zone

T3:

thyroid hormone

TGF-α:

transforming growth factor-α

TGF-β:

transforming growth factor-β

TGFRI:

transforming growth factor-β receptor I

TGFRII:

transforming growth factor-β receptor II

TSP:

thrombospondin(s)

VZ:

ventricular zone

Wnt:

wingless

References

  • Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 4:595–604.

    Article  CAS  Google Scholar 

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22:9430–9444.

    CAS  PubMed  Google Scholar 

  • Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 5:542–548.

    Article  CAS  Google Scholar 

  • Althaus HH, Richter-Landsberg C (2000) Glial cells as targets and producers of neurotrophins. Int Rev Cytol 197:203–277.

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686.

    Article  CAS  PubMed  Google Scholar 

  • Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serves as neuronal progenitors in all regions of the central nervous system. Neuron 25:881–890.

    Article  Google Scholar 

  • Anton ES, Marchionni MA, Lee KF, Rakic P (1997) Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124:3501–3510.

    CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 5:208–215.

    Article  Google Scholar 

  • Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 10:2106–2118.

    Article  Google Scholar 

  • Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 7:2333–2344.

    Article  Google Scholar 

  • Bacaj T, Tevlin M, Lu Y, Shaham S (2008) Glia are essential for sensory organ function in C. elegans. Science 322:744–747.

    Article  CAS  PubMed  Google Scholar 

  • Baghdassarian D, Toru-Delbauffe D, Gavaret JM, Pierre M (1993) Effects of transforming growth factor-beta 1 on the extracellular matrix and cytoskeleton of cultured astrocytes. Glia 7:193–202.

    Article  CAS  PubMed  Google Scholar 

  • Bahr M, Przyrembel C, Bastmeyer M (1995) Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol 131:211–220.

    Article  CAS  PubMed  Google Scholar 

  • Barker AJ, Koch SM, Reed J, Barres BA, Ullian EM (2008) Developmental control of synaptic receptivity. J Neurosci 33:8150–8160.

    Article  CAS  Google Scholar 

  • Barnabé-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265.

    Article  PubMed  CAS  Google Scholar 

  • Barres B (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440.

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Bruno V, Ngomba RT, Di Grezia R, Copani A, Nicoletti F (1998) Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death. Eur J Pharmacol 356:271–274.

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Development of the endopiriform nucleus and the claustrum in the rat brain. Neuroscience 45:391–412.

    Article  CAS  PubMed  Google Scholar 

  • Bentivoglio M, Mazzarello P (1999) The history of radial glia. Brain Res Bull 49:305–315.

    Article  CAS  PubMed  Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 26:7028–7040.

    Article  CAS  Google Scholar 

  • Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 32:8654–8664.

    Article  CAS  Google Scholar 

  • Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi R, Garbuglia M, Verzini M, Giambanco I, Spreca A, Donato R (1995) S-100 protein and annexin II2-p11(2) (calpactin I) act in concert to regulate the state of assembly of GFAP intermediate filaments. Biochem Biophys Res Commun 208:910–918.

    Article  CAS  PubMed  Google Scholar 

  • Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of glial fibrillary acidic protein in astrocyte by immunofluorescence. Brain Res 43:429–435.

    Article  CAS  PubMed  Google Scholar 

  • Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020.

    CAS  PubMed  Google Scholar 

  • Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, Kessler JA (2008) Noggin expands neural stem cells in the adult hippocampus. J Neurosci 37:9194–9204.

    Article  CAS  Google Scholar 

  • Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483.

    Article  CAS  PubMed  Google Scholar 

  • Bradke F, Dotti CG (2000) Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Cur Opin Neurobiol 10:574–581.

    Article  CAS  Google Scholar 

  • Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145.

    Article  CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J Neurosci 18:9594–9600.

    CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Copani A, D‘Onofrio M, Di Iorio P, De Blasi A, Melchiorri D, Flor PJ, Nicoletti F (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 9:1013–1033.

    Article  Google Scholar 

  • Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F (1997) The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci 17:1891–1897.

    CAS  PubMed  Google Scholar 

  • Buisson A, Lesne S, Docagne F, Ali C, Nicole O, MacKenzie ET, Vivien D (2003) Transforming growth factor-beta and ischemic brain injury. Cell Mol Neurobiol 23:539–550.

    Article  CAS  PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 1:183–192.

    Google Scholar 

  • Cai Z, Schools GP, Kimelberg HK (2000) Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia 1:70–80.

    Article  Google Scholar 

  • Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 1:11–18.

    Article  CAS  Google Scholar 

  • Campbell K, Götz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25:235–238.

    Article  CAS  PubMed  Google Scholar 

  • Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 6:561–581.

    Article  Google Scholar 

  • Carney RS, Cocas LA, Hirata T, Mansfield K, Corbin JG (2008) Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. Cereb Cortex 19:745–759.

    Article  PubMed  Google Scholar 

  • Chamak B, Fellous A, Glowinski J, Prochiantz A (1987) MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neurosci 7:3163–3170.

    CAS  PubMed  Google Scholar 

  • Chang MS, Ariah LM, Marks A, Azmitia EC (2005) Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge. Brain Res 1031:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471.

    CAS  PubMed  Google Scholar 

  • Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148:295–311.

    Article  CAS  PubMed  Google Scholar 

  • Chojnacki A, Shimazaki T, Gregg C, Weinmaster G, Weiss S (2003) Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci 23:1730–1741.

    CAS  PubMed  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433.

    Article  CAS  PubMed  Google Scholar 

  • Copani A, Bruno V, Battaglia G, Leanza G, Pellitteri R, Russo A, Stanzani S, Nicoletti F (1995) Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol Pharmacol 47:890–897.

    CAS  PubMed  Google Scholar 

  • Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V (2007) The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 27:8297–8308.

    Article  CAS  PubMed  Google Scholar 

  • Dahl D (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res 6:741–748.

    Article  CAS  PubMed  Google Scholar 

  • Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006) Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302.

    Article  CAS  PubMed  Google Scholar 

  • Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80.

    Google Scholar 

  • de Azevedo LC, Fallet C, Moura-Neto V, Daumas-Duport C, Hedin-Pereira C, Lent R (2003) Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. J Neurobiol 55:288–298.

    Article  Google Scholar 

  • de Sampaio e Spohr TCL, Martinez R, da Silva EF, Moura Neto V, Gomes FC (2002) Neuro-glia interactions effects on GFAP gene: a novel role for transforming growth factor beta 1. Eur J Neurosci 16:2059–2069.

    Article  PubMed  Google Scholar 

  • de Sousa OV, Romão L, Neto VM, Gomes FC (2004) Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 19:1721–1730.

    Article  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034.

    Article  CAS  PubMed  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550.

    CAS  PubMed  Google Scholar 

  • D’Onofrio M, Cuomo L, Battaglia G, Ngomba RT, Storto M, Kingston AE, Orzi F, De Blasi A, Di Iorio P, Nicoletti F, Bruno V (2001) Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J Neurochem 78:435–445.

    Article  PubMed  Google Scholar 

  • Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8:873–880.

    CAS  PubMed  Google Scholar 

  • Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 25:3638–3650.

    Article  CAS  PubMed  Google Scholar 

  • Eng LF, Vanderhaeghen JJ, Bignami A, Gerste B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354.

    Article  CAS  PubMed  Google Scholar 

  • Ever L, Gaiano N (2005) Radial glial progenitors: neurogenesis and signaling. Curr Opin Neurobiol 1:29–33.

    Article  CAS  Google Scholar 

  • Feng L, Heintz N (1995) Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development 121:1719–1730.

    CAS  PubMed  Google Scholar 

  • Feng Z, Ko CP (2008) Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. J Neurosci 39:9599–9609.

    Article  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504.

    Article  CAS  PubMed  Google Scholar 

  • Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382.

    Article  CAS  PubMed  Google Scholar 

  • Flanders KC, Lüdecke G, Renzig J, Hamm C, Cissel DS, Unsicker K (1993) Effect of TGF-βs and bFGF on astroglial cell growth and gene expression in vitro. Mol Cell Neurosci 4:406–417.

    Article  CAS  PubMed  Google Scholar 

  • Flanders KC, Ren RF, Lippa CF (1998) Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 54:71–85.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher TL, De Camilli P, Banker G (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 11:6695–6706.

    Google Scholar 

  • Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V (2002) Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 513:197–223.

    CAS  PubMed  Google Scholar 

  • Gagelin C, Pierre M, Gavaret JM, Toru-Delbauffe D (1995) Rapid TGF beta 1 effects on actin cytoskeleton of astrocytes: comparison with other factors and implications for cell motility. Glia 13:283–293.

    Article  CAS  PubMed  Google Scholar 

  • Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490.

    Article  CAS  PubMed  Google Scholar 

  • Galileo DS, Gray GE, Owens GC, Majors J, Sanes JR (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA 87:458–462.

    Article  CAS  PubMed  Google Scholar 

  • Garcia CM, Darland DC, Massingham LJ, D’Amore PA (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Dev Brain Res 152:25–38.

    Article  CAS  Google Scholar 

  • Garcia-Abreu J, Mendes FA, Onofre GR, Freitas MS, Silva LCF, Moura Neto V, Cavalcante L (2000) Contribution of heparin sulfate to the non-permissive role of the midline glia to the growth of midbrain neurites. Glia 29:260–272.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Abreu J, Moura-Neto V, Carvalho SL, Cavalcante LA (1995) Regionally specific properties of midbrain glia. I. Interactions with midbrain neurons. J Neurosci Res 40:417–477.

    Article  Google Scholar 

  • Ghashghaei HT, Weimer JM, Schmid RS, Yokota Y, McCarthy KD, Popko B, Anton ES (2007) Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev 21:3258–3271.

    Article  CAS  Google Scholar 

  • Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc Natl Acad Sci USA 87:3454–3458.

    Article  CAS  PubMed  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394.

    Article  CAS  PubMed  Google Scholar 

  • Gomes FCA, Garcia-Abreu J, Galou M, Paulin D, Moura Neto V (1999a) Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia 26:97–108.

    Article  CAS  PubMed  Google Scholar 

  • Gomes FCA, Maia CG, Menezes JRL, Moura Neto V (1999b) Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia 25:247–255.

    Article  CAS  PubMed  Google Scholar 

  • Goritz C, Mauch D, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201.

    Article  CAS  PubMed  Google Scholar 

  • Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 2:138–149.

    Article  CAS  Google Scholar 

  • Guizzetti M, Moore N, Giordano G, Costa LG (2008) Modulation of neuritogenesis by astrocyte muscarinic receptors. J Biol Chem 283:31884–31897.

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Barde YA (2005) Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46:369–372.

    Article  PubMed  CAS  Google Scholar 

  • Götz M, Hartfuss E, Malatesta R (2002) Radial glia as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Dev Brain Res Bull 57:777–788.

    Article  Google Scholar 

  • Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044.

    Article  PubMed  Google Scholar 

  • Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415.

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 2:384–396.

    Article  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539.

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663.

    Article  CAS  PubMed  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Mol Brain Res 124:114–123.

    Article  CAS  PubMed  Google Scholar 

  • Hunter KE, Hatten ME (1995) Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Natl Acad Sci USA 92:2061–2065.

    Article  CAS  PubMed  Google Scholar 

  • Ihrie RA, Alvarez-Buylla A (2007) Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 331:179–191.

    Article  PubMed  Google Scholar 

  • Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277–293.

    Article  PubMed  Google Scholar 

  • Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N (1994) Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 4:239–243.

    Article  CAS  PubMed  Google Scholar 

  • Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J (1999) Neural stem cells in the adult human brain. Exp Cell Res 253:733–736.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Weick JP, Pearce RA, Zhang SC (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 12:3069–3077.

    Article  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th ed. McGraw-Hill, New York.

    Google Scholar 

  • Kanemaru K, Okubo Y, Hirose K, Iino M (2007) Regulation of neurite growth by spontaneous Ca2+ oscillations in astrocytes. J Neurosci 27:8957–8966.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci 1:683–692.

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Ransom BR (2005) Neuroglia, 2nd ed. Oxford University Press, USA.

    Google Scholar 

  • Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 19:11023–11028.

    Article  CAS  Google Scholar 

  • Kommers T, Rodnight R, Boeck C, Vendite D, Oliveira D, Horn J, Oppelt D, Wofchuk S (2002) Phosphorylation of glial fibrillary acidic protein is stimulated by glutamate via NMDA receptors in cortical microslices and in mixed neuronal/glial cell cultures prepared from the cerebellum. Dev Brain Res 137:139–148.

    Article  CAS  Google Scholar 

  • Kommers T, Rodnight R, Oppelt D, Oliveira D, Wofchuk S (1999) The mGluR stimulating GFAP phosphorylation in immature hippocampal slices has some properties of a group II receptor. Neuroreport 10:2119–2123.

    Article  CAS  PubMed  Google Scholar 

  • Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K (1998) Glial cell line-derived neurotrophic factor requires transforming growth factor-β for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18:9822–9834.

    CAS  PubMed  Google Scholar 

  • Kriegstein AR, Götz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43.

    Article  PubMed  Google Scholar 

  • Környei Z, Gócza E, Rühl R, Orsolits B, Vörös E, Szabó B, Vágovits B, Madarász E (2007) Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J 21:1–14.

    Article  CAS  Google Scholar 

  • Környei Z, Szlávik V, Szabó B, Gócza E, Czirók A, Madarász E (2005) Humoral and contact interactions in astroglia/stem cell co-cultures in the course of glia-induced neurogenesis. Glia 49:430–444.

    Article  PubMed  Google Scholar 

  • Laping NJ, Morgan TE, Nichols NR, Rozovsky I, Young-Chan CS, Zarow C, Finch CE (1994) Transforming growth factor-beta 1 induces neuronal and astrocyte genes: tubulin alpha 1, glial fibrillary acidic protein and clusterin. Neuroscience 58:563–572.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25:2033–2043.

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song H-J, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375.

    Article  CAS  PubMed  Google Scholar 

  • Liesi P, Dahl D, Vaheri A (1983) Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96:920–924.

    Article  CAS  PubMed  Google Scholar 

  • Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 96:7526–7531.

    Article  CAS  PubMed  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726.

    Article  CAS  PubMed  Google Scholar 

  • Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699.

    Article  CAS  PubMed  Google Scholar 

  • Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178.

    Article  PubMed  Google Scholar 

  • Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764.

    Article  CAS  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263.

    CAS  PubMed  Google Scholar 

  • Martinez R, Gomes FC (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 51:49311–49318.

    Article  CAS  Google Scholar 

  • Martinez R, Gomes FC (2005) Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor-protein kinase a pathway. J Neurosci Res 3:341–349.

    Article  CAS  Google Scholar 

  • Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia derived cholesterol. Science 294:1354–1357.

    Article  CAS  PubMed  Google Scholar 

  • Mecha M, Rabadán MA, Peña-Melián A, Valencia M, Mondéjar T, Blanco MJ (2008) Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms. Dev Dyn 237:1709–1717.

    Article  CAS  PubMed  Google Scholar 

  • Mendes FA, Onofre GR, Silva LCF, Cavalcante LA, Garcia-Abreu J (2003) Concentration-dependent actions of glial chondroitin sulfate on the neuritic growth of midbrain neurons. Dev Brain Res 142:111–119.

    Article  CAS  Google Scholar 

  • Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101: 17528–17535.

    Article  CAS  PubMed  Google Scholar 

  • Miller MW (2003) Expression of transforming growth factor-beta in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J Comp Neurol 460:410–424.

    Article  CAS  PubMed  Google Scholar 

  • Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369.

    Article  CAS  PubMed  Google Scholar 

  • Mong JA, Nuñez JL, McCarthy MM (2002) GABA mediates steroid-induced astrocyte differentiation in the neonatal rat hypothalamus. J Neuroendocrinol 14:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Morrow T, Song MR, Ghosh A (2001) Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128:3585–3594.

    CAS  PubMed  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Nakashima K, Wiese S, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Yoshida K, Kishimoto T, Sendtner M, Taga T (1999a) Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J Neurosci 19:5429–5434.

    CAS  PubMed  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999b) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530.

    Article  CAS  PubMed  Google Scholar 

  • Nelson PG, Fields RD, Liu Y (1995) Neural activity, neuron-glia relationships, and synapse development. Perspect Dev Neurobiol 2:399–407.

    CAS  PubMed  Google Scholar 

  • Nicholson JL, Altman J (1972) The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 44:13–23.

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 2:331–340.

    Article  CAS  Google Scholar 

  • Nishino J, Yamashita K, Hashiguchi H, Fujii H, Shimazaki T, Hamada H (2004) Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension. EMBO J 23:1998–2008.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100β modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99:4037–4042.

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720.

    Article  CAS  PubMed  Google Scholar 

  • Nägler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 533:665–679.

    Article  PubMed  Google Scholar 

  • Okada M, Matsumura M, Ogino N, Honda Y (1990) Müller cells in detached human retina express glial fibrillary acidic protein and vimentin. Graefes Arch Clin Exp Ophthalmol 228:467–474.

    Article  CAS  PubMed  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 5518:923–926.

    Article  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 15:8629–8634.

    Article  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR mediated neuronal excitation. Nature Neurosci 4:803–812.

    Article  CAS  PubMed  Google Scholar 

  • Patten BA, Peyrin JM, Weinmaster G, Corfas G (2003) Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci 23:6132–6140.

    CAS  PubMed  Google Scholar 

  • Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G (2000) The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 3:1076–1084.

    Google Scholar 

  • Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta 2:271–280.

    Google Scholar 

  • Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687.

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26.

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Götz M (2007) Radial glial cell heterogeneity – the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23.

    Article  CAS  PubMed  Google Scholar 

  • Pixley SKR, De Vellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev Brain Res 15:201–209.

    Article  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455.

    Article  CAS  PubMed  Google Scholar 

  • Pratt BM, McPherson JM (1997) TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 8:267–292.

    Article  CAS  PubMed  Google Scholar 

  • Prochiantz A (1995) Neuronal polarity: giving neurons heads and tails. Neuron 15:743–746.

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80.

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33:471–476.

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541–549.

    Article  PubMed  Google Scholar 

  • Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100β expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55:165–177.

    Article  PubMed  Google Scholar 

  • Raymond PA, Hitchcock PF (1997) Retinal regeneration: common principles but a diversity of mechanisms. Adv Neurol 72:171–184.

    CAS  PubMed  Google Scholar 

  • Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 25:6607–6619.

    Article  CAS  Google Scholar 

  • Robitaille R (1998) Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 4:847–855.

    Article  Google Scholar 

  • Romão LF, de Sousa OV, Neto VM, Gomes FC (2008) Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 2:746–756.

    Article  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    Article  CAS  PubMed  Google Scholar 

  • Runquist M, Alonso G (2003) Gabaergic signaling mediates the morphological organization of astrocytes in the adult rat forebrain. Glia 41:137–151.

    Article  PubMed  Google Scholar 

  • Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G (2006) Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127:185–197.

    Article  CAS  PubMed  Google Scholar 

  • Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152.

    Article  CAS  PubMed  Google Scholar 

  • Schmid RS, Mcgrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, Anton ES (2003) Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci USA 7:4251–4256.

    Article  CAS  Google Scholar 

  • Schools GP, Kimelberg HK (1999) mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 58:533–543.

    Article  CAS  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206.

    Article  CAS  PubMed  Google Scholar 

  • Seri B, García-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378.

    Article  PubMed  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160.

    CAS  PubMed  Google Scholar 

  • Sharif A, Legendre P, Prévot V, Allet C, Romao L, Studler J-M, Chneiweiss H, Junier M-P (2006) Transforming growth factor α promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene 26:2695–2706.

    Article  PubMed  CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355.

    Article  CAS  PubMed  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 11:685–700.

    Article  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9.

    Article  CAS  PubMed  Google Scholar 

  • Song HJ, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Soriano E, Alvarado-Mallart RM, Dumesnil N, Del Río JÁ, Sotelo C (1997) Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron 18:563–577.

    Article  CAS  PubMed  Google Scholar 

  • Sottile V, Li M, Scotting PJ (2006) Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099:8–17.

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18.

    Article  CAS  PubMed  Google Scholar 

  • de Sampaio e Spohr TCL, Choi JW, Gardell SE, Herr DR, Rehen SK, Gomes FC, Chun J (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283:7470–7479.

    Article  PubMed  CAS  Google Scholar 

  • Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineagein adult hippocampal neurogenesis. Glia 54:805–814.

    Article  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 6:1164–1178.

    Article  CAS  Google Scholar 

  • Stipursky J, Gomes FC (2007) TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55:1023–1033.

    Article  PubMed  Google Scholar 

  • Sullivan SM, Lee A, Bjorkman ST, Miller SM, Sullivan RK, Poronnik P, Colditz PB, Pow DV (2007) Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem 282:29414–29423.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376.

    Article  CAS  PubMed  Google Scholar 

  • Supèr H, Del Río JA, Martínez A, Pérez-Sust P, Soriano E (2000) Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex 10:602–613.

    Article  PubMed  Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 3:932–940.

    Google Scholar 

  • Takahashi T, Misson JP, Caviness VS Jr (1990) Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 302:15–28.

    Article  CAS  PubMed  Google Scholar 

  • Tateishi N, Shimoda T, Manako J, Katsumata S, Shinagawa R, Ohno H (2006) Relevance of astrocytic activation to reductions of astrocytic GABAA receptors. Brain Res 1:79–91.

    Article  CAS  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117.

    Article  CAS  PubMed  Google Scholar 

  • Tesseur I, Wyss-Coray T (2006) A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 3:505–513.

    Article  CAS  PubMed  Google Scholar 

  • Ueki T, Tanaka M, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Miura N, Sugimura H, Sato K (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23:11732–11740.

    CAS  PubMed  Google Scholar 

  • Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216.

    Article  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661.

    Article  CAS  PubMed  Google Scholar 

  • Vardimon L, Ben-Dror I, Havazelet N, Fox LE (1993) Molecular control of glutamine synthetase expression in the developing retina tissue. Dev Dyn 196:276–282.

    CAS  PubMed  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 16:6897–6906.

    Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 1:28–37.

    Article  CAS  Google Scholar 

  • Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128.

    Article  CAS  PubMed  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88.

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640.

    Article  CAS  PubMed  Google Scholar 

  • Wachs FP, Winner B, Couillard-Despres S, Schiller T, Aigner R, Winkler J, Bogdahn U, Aigner L (2006) Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65:358–370.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Analyt Chem 72:2001–2007.

    Article  CAS  Google Scholar 

  • Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggitt D, Koblar SA, Gliniak BC, McKenna HJ, Papayannopoulou T, Thoma B (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283–1299.

    CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta1. Am J Pathol 147:53–67.

    CAS  PubMed  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA 100:15194–15199.

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715.

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Nery S, Rutlin ML, Radtke F, Fishell G, Gaiano N (2004) Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J Neurosci 24:9497–9506.

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Nowakowski RS, Vaccarino FM (2004) Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 26:181–196.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21:7901–7908.

    CAS  PubMed  Google Scholar 

  • Zhou CJ, Zhao C, Pleasure SJ (2004) Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J Neurosci 24:121–126.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909.

    CAS  PubMed  Google Scholar 

  • Ziegler DR, Innocente CE, Leal RB, Rodnight R, Gonçalves CA (1998) The S100β protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochem Res 23:1259–1263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

For financial support: FAPERJ, CNPq, CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Carvalho Alcantara Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stipursky, J., de Sampaio e Spohr, T.C.L., Romão, L.F., Gomes, F.C.A. (2010). Neuron-Astroglial Interactions in Cell Fate Commitment in the Central Nervous System. In: Ulrich, H. (eds) Perspectives of Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3375-8_11

Download citation

Publish with us

Policies and ethics