Skip to main content

Needle-Type Multi-Analyte MEMS Sensor Arrays for In Situ Measurements in Biofilms

  • Chapter
  • First Online:
Book cover Emerging Environmental Technologies, Volume II

Abstract

Biofilms are colonies of microbial cells in a polymeric matrix. Formation of biofilms has been associated with a broad range of industrial problems at the annual cost of billions of dollars. For example, biofilms are ubiquitous in water distribution systems and control of their growth have been a great challenge, with many water utilities in the US reporting biofilm survival in water distribution systems despite the continuing presence of disinfectants. In addition to being a nuisance, biofilms may also harbor various types of microorganisms including opportunistic pathogens and thus can threaten public health. The conventional methods for studying biofilms include microelectrode sensors fabricated from pulled glass micropipettes. However, fragility, difficulty to manufacture and operate, and susceptibility to electrical interference limit their use to specialized laboratories under highly controlled conditions. Thus, there is a critical need for robust microelectrode sensors that can be used In Situ to study biofilms.

This chapter describes the use of microelectromechanical systems (MEMS) technologies to develop needle-type sensors for In Situ measurements in biofilms. The individual needle-type sensors for measuring oxidation reduction potential (ORP), dissolved oxygen (DO), and phosphate were integrated into a single multi-analyte sensor array. All three sensors were extensively characterized, exhibiting higher sensitivity, faster response time, and higher stability with smaller tip size than the conventional sensors. The multi-analyte sensor was successfully applied to In Situ evaluation of microprofiles in multi-species biofilms. The major advantages of these new MEMS sensors include the ability to penetrate samples to perform measurements, the small tip size for In Situ measurements, array structure for higher robustness, and possibility of multi-analyte detection. The sensors demonstrated monitoring of local concentration changes in small structures with a high spatial resolution, and offer the versatility of the microelectrode technique as well as the capability for repetitive measurements. Ultimately, this research will enable in situ measurements in a wide variety of small sample applications in environmental engineering and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTM::

American society for testing and materials

COM::

Commercially available millielectrode

CCD::

Charge couple device

COD::

Chemical oxygen demand

DO::

Dissolved oxygen

EBPR::

Enhanced biological phosphorus removal

EDM::

Electrical discharge machining

EPS::

Extracellular polymeric substances

FISH::

Fluorescent in situ hybridization

HOC::

Hydrophobic organic compound

HRT::

Hydraulic retention time

IC::

Integrated circuit

ISFETs::

Ion-sensitive field-effect transistors

LOC::

Lab-on-a-chip

ME::

Conventional pulled-glass pipette microelectrode

MEA::

Microelectrode Array

MEMS::

Microelectromechanical systems

MLSS::

Mixed liquid suspended solids

ORP::

Oxidation reduction potential

PAOs::

Phosphate accumulating organisms

PCB::

Printed circuit board

SBR::

Sequencing batch reactor

SRT::

Sludge retention time

UEA::

Utah Electrode Array

References

  1. Characklis W.G. and Marshall K.C. (1990) Biofilms, John Wiley & Sons, Inc., New York.

    Google Scholar 

  2. Geesey G.G., Lewandowski Z., and Flemming H.C. (1994) Biofouling and biocorrosion in industrial water systems, CRC, Boca Raton, FL, 175–212.

    Google Scholar 

  3. American Water Works Association (2005) Monitoring ammonia oxidizing bacteria in chloraminated distribution systems, AWWARF, Denver, CO.

    Google Scholar 

  4. American Water Works Association (2007) Coliforms in distribution systems: Integrated disinfection and antimicrobial resistance, AWWARF, Denver, CO.

    Google Scholar 

  5. Momba M.N.B., Kfir R., Venter S.N., and Cloete T.E. (2000) An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA, 26(1), 59–66.

    Google Scholar 

  6. Camper A.K. and McFeters G.A. (2000) Problems of biofouling in drinking water systems. In Industrial biofouling: detection, prevention and control, John Wiley & Sons, New York, 13–38.

    Google Scholar 

  7. Costeron J.W., Stewart P.S., and Greenberg E.P. (1999) Bacterial biofilm: a common cause of persistent infections. Science, 284, 1318–1322.

    Article  Google Scholar 

  8. Davis P.B. (2001) Cystic fibrosis. Pediatr. Rev., 22, 257–264.

    Article  CAS  Google Scholar 

  9. Bishop P. (1997) Biofilm structure and kinetics. Water. Sci. Technol., 36, 287–294.

    CAS  Google Scholar 

  10. Cunnigham A.B., Sharp R.R., Hiebert R., and James G. (2003) Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Bioremediat. J., 7, 151–164.

    Article  Google Scholar 

  11. Wang W., Zhang X., and Wang D. (2002) Adsorption of p-cholorophenol by biofilm components. Water Res., 36, 551–560.

    Article  CAS  Google Scholar 

  12. Piatt J.J., Backhus D.A., Capel P.D., and Eisenreich S.J. (1996) Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments. Environ. Sci. Technol., 30, 751–760.

    Article  CAS  Google Scholar 

  13. Holmén B.A. and Gschwend P.M. (1997) Estimating sorption rates of hydrophobic organic compounds in iron oxide- and aluminosilicate clay-coated aquifer sands. Environ. Sci. Technol., 31, 105–113.

    Article  Google Scholar 

  14. Eriksson M., Dalhammar G., and Mohn W.W. (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol. Ecol., 40, 21–27.

    Article  CAS  Google Scholar 

  15. Rodrigues A.C., Wurtz S., Brito A.G. and Melo L.F. (2005) Fluorene and phenanthene uptake by Psedomonas putida ATCC 17514: kinetics and physiological aspect. Biotechnol. Bioeng., 90, 281–289.

    Article  CAS  Google Scholar 

  16. Seo Y. and Bishop P.L. (2007) The influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailablity during simulated surfactant enhanced bioremediation. Environ. Sci. Technol., 41, 7107–7113.

    Article  CAS  Google Scholar 

  17. Lamarche P., Lauzon F., Tetreault M., and Barker J.F. (2001) Biodegradation of naphthalene plume in a funnel-and-gate system. In: Bioaugmentation, Biobarriers, and Biogeochemistry, the Sixth International In Situ and On-Site Bioremediation Symposium, San Diego, 95–103.

    Google Scholar 

  18. Kao C.M., Chen S.C., and Liu J.K. (2001) Development of a biobarrier for the remediation of PCE-contaminated aquifer. Chemosphere, 43, 1071–1078.

    Article  CAS  Google Scholar 

  19. Miller K.D. and Johnson P.C., and Bruce C.L. (2001) Full-scale in-situ biobarrier demonstration for containment and treatment of MTBE. Remediation, Winter, 12(1), 25–36.

    Article  Google Scholar 

  20. Amann R.I. (1995) Fluorescently labelled, rRNA-targeted oligonucleotide probes in the study of microbial ecology. Mol. Ecol., 4, 543–554.

    Article  CAS  Google Scholar 

  21. Zhang T. and Bishop P. (1994) Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface. Water Sci. Technol., 30(11), 47–58.

    Google Scholar 

  22. Zhang T.C., Fu Y.C., Bishop P.L., Kupferl M., FitzGerald S., Jiang H.H., and Harmer C. (1995) Transport and biodegradation of toxic organics in biofilms. J. Hazard. Mater., 41, 267–285.

    Article  CAS  Google Scholar 

  23. Revsbech N.P. (1989) An oxygen microsensor with a guard cathode. Limnol. Oceanogr., 34, 474–478.

    Article  CAS  Google Scholar 

  24. De Beer D., Van den Heuvel J.C., and Ottengraf S.P. (1993) Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol., 59(2), 573–579.

    Google Scholar 

  25. Kuhl M., and Jírgensen B.B. (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol., 58, 1164–1174.

    CAS  Google Scholar 

  26. Yu T. and Bishop P. (1998) Stratification of microbial metabolic processes and redox potential change in sulfate-reducing biofilms studied using oxygen, sulfide, pH and redox potential microelectrodes. Water Sci. Technol., 37(4-5), 195–198.

    Article  CAS  Google Scholar 

  27. Lissner J., Mendelssohn I.A., and Anastasiou C.J. (2003) A method for cultivating plants under controlled redox intensities in hydroponics. Aquat. Bot., 76, 93–108.

    Article  Google Scholar 

  28. Lee W. H., Seo Y., Bishop P.L. (2009) Cobalt-based phosphate microelectrode for in-situ environmental analysis. Sens. Actuators B., 137(1), 121–128.

    Article  CAS  Google Scholar 

  29. Naidu R., Sumner M.E., and Harter R.D. (1998) Sorption of heavy metals in strongly weathered soils: an overview. Environ. Geochem. Health, 20, 5–9.

    Article  CAS  Google Scholar 

  30. Zhang T.C. and Pang H. (1999) Applications of microelectrode techniques to measure pH and oxidation-reduction potential in rhizosphere soil. Environ. Sci. Technol., 33, 1293–1299.

    Article  CAS  Google Scholar 

  31. Wightman R.M. (2006) Probing cellular chemistry in biological systems with microelectrodes. Science, 311, 1570–1574.

    Article  CAS  Google Scholar 

  32. Zoski C.G. (2002) Ultramicroelectrodes: design, fabrication, and characterization. Electroanalysis, 14(15), 1041–1051.

    Article  CAS  Google Scholar 

  33. Ramamoorthy R., Dutta P.K., and Akbar S.A. (2003) Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci., 38, 4271–4282.

    Article  CAS  Google Scholar 

  34. Wang J. (2000) In situ electrochemical monitoring: from remote sensors to submersible microlaboratories. Lab. Rob. Autom., 12, 178–182.

    Article  CAS  Google Scholar 

  35. Li B. and Bishop P. (2004) Micro-profiles of activated sludge floc determined using microelectrodes. Water Res., 38, 1248–1258.

    Article  CAS  Google Scholar 

  36. Fu Y., Jiang H., and Bishop P. (1994) An inhibition study of the effect of azo dyes on bioactivity of biofilms. Water Sci. Technol., 29(7), 365–372.

    CAS  Google Scholar 

  37. Zhang T. and Bishop P. (1994) Density, porosity and pore structure of biofilms. Water Res., 28, 2267–2277.

    Article  CAS  Google Scholar 

  38. Zhang T., Fu Y., and Bishop P. (1994) Competition in biofilms. Water Sci. Technol., 29, 263–270.

    CAS  Google Scholar 

  39. Glud R.N., Ramsing N.B., Gundersen J.K., and Klimant I. (1996) Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser., 140(1-3), 217–226.

    Article  Google Scholar 

  40. Bishop P. and Yu T. (1999) A microelectrode study of redox potential change in biofilms. Water Sci. Technol., 39(7), 179–185.

    Article  CAS  Google Scholar 

  41. Zhang T.C. and Bishop P.H. (1994a) Evaluation of tortuosity factors and effective diffusivities in biofilms. Water Res., 28(11), 2279–2287.

    Article  CAS  Google Scholar 

  42. Luther G.W. III, Glazer B.T., Hohmann L., Popp J.I., Taillefert M., Rozan T.F., Brendel P.J., Thebergea S.M., and Nuzziod D.B. (2001) Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J. Environ. Monit., 3, 61–66.

    Article  CAS  Google Scholar 

  43. Linsenmeier R.A. and Yancey C.M. (1987) Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J. Appl. Physiol., 63, 2554–2557.

    CAS  Google Scholar 

  44. Warburton P.R., Sawtelle R.S., Watson A. and Wang A.Q. (2001) Failure prediction for a galvanic oxygen sensor. Sens. Actuators B, 72, 197–203.

    Article  Google Scholar 

  45. Pang H. and Zhang T.C. (1998) Fabrication of redox potential microelectrodes for studies in vegetated soils or biofilm systems. Environ. Sci. Technol., 32, 3646–3652.

    Article  CAS  Google Scholar 

  46. Kovacs G.T.A. (1998) Micromachined transducers sourcebook, McGraw Hill, Boston, MA.

    Google Scholar 

  47. Ahn C.H., Choi J.-W., Beaucage G., Nevin J.H., Lee J.-B., Puntambekar A., and Lee J.Y. (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE, 92(1), 154–173.

    Article  CAS  Google Scholar 

  48. Vespoorte E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis, 23, 677–712.

    Article  Google Scholar 

  49. Kricka L. (2001) Microchips, microarrays, biochips, and nanochips: personal laboratories for the 21st century. Clin. Chim. Acta, 307, 219–223.

    Article  CAS  Google Scholar 

  50. Bergveld P. (2003) Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B, 88, 1–20.

    Article  Google Scholar 

  51. Fofonoff T.A., Martel S.M., Hatsopoulos N.G., Donoghue J.P., and Hunter I.W. (2004) Microelectrode array fabrication by electrical discharge machining and chemical etching. IEEE Trans. Biomed. Electron., 51, 890–895.

    Article  Google Scholar 

  52. Motta P.S. and Judy J.W. (2005) Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans. Biomed. Electron., 52, 923–933.

    Article  Google Scholar 

  53. Takeuchi S., Suzuki T., Mabuchi K., and Fujita H. (2004) 3D flexible multichannel neural probe array. J. Micromech. Microeng., 14, 104–107.

    Article  Google Scholar 

  54. Jones K.E., Campbell P.K., and Normann R.A. (1992) A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng., 20, 423–437.

    Article  CAS  Google Scholar 

  55. Lee J.-H., Jang A., Myers R., Bhadri P., Timmons W., Beyette F., Bishop P.L., and Papautsky I. (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sens. Actuators B, 115, 220–226.

    Article  CAS  Google Scholar 

  56. Jang A., Lee J.-H., Bhadri P., Kumar S., Beyette F., Timmons W., Papautsky, I., and Bishop P.L. (2005) Miniaturized redox potential probe for in situ environmental monitoring. Environ. Sci. Technol., 39, 6191–6197.

    Article  CAS  Google Scholar 

  57. Lee J.-H., Lim T.-S., Seo Y., Bishop P.L., and Papautsky I. (2007) Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sens. Actuators B, 128, 179–185.

    Article  CAS  Google Scholar 

  58. Lee J.-H., Seo Y., Lim T.-S., Bishop P.L., and Papautsky I. (2007) Integrated microelectrode array sensor for in situ oxidation reduction potential and dissolved oxygen measurements. Environ. Sci. Technol., 41, 7857–7863.

    Article  CAS  Google Scholar 

  59. Lee J.-H., Lee W. H., Bishop P.L., and Papautsky I. (2009) Cobalt coated needle-type microelectrode array sensor for in situ monitoring of phosphate. J. Micromech. Microeng., 19, 025022.

    Article  CAS  Google Scholar 

  60. 60. Lee W. H., Lee J.-H., Bishop P.L., and Papautsky I. (2009) Biological application of MEMS microelectrode array sensors for direct measurement of phosphate in the enhanced biological phosphorous removal process. Water Environ. Res., accepted October 2008.

    Google Scholar 

  61. Srinivasan P., Beyette F.R., and Papautsky I. (2004) Micromachined arrays of cantilevered glass probes. Appl. Opt., 43(4), 776–782.

    Article  Google Scholar 

  62. Lee J.-H., Jang A., Bhadri P., Kumar S., Beyette F., Timmons W., Bishop P., and Papautsky I. (2005) Microelectrode arrays for in situ environmental monitoring. Transducers ’05, Seoul, Korea, June 5–9.

    Google Scholar 

  63. Bendikova T.A., Miserendinob S., Taib Y.-C., and Harmon T.C. (2007) A parylene-protected nitrate selective microsensor on a carbon fiber cross section. Sens. Actuators B, 123, 127–134.

    Article  CAS  Google Scholar 

  64. Wang Z., Ou Y., Lu T.-M., and Koratkar N. (2007) Wetting and electrowetting properties of carbon nanotube templated parylene films. J. Phys. Chem. B, 111(17), 4296–4299.

    Article  CAS  Google Scholar 

  65. ORP Theory; Van London-pHoenix Company, Houston, TX; http://www.vl-pc.com/orptheory.html, accessed 01/22/09.

  66. ASTM D1498, Standard practice for oxidation-reduction potential of water, American Society for Testing and Materials (ASTM).

    Google Scholar 

  67. Lu R. and Yu T. (2002) Fabrication and evaluation of an oxygen microelectrode applicable to environmental engineering and science. J. Environ. Eng. Sci., 1, 225–235.

    Article  CAS  Google Scholar 

  68. Davies P.W. and Brink F. (1942) Microelectrodes for measuring local oxygen tension in animal tissues. Rev. Sci. Instrum., 13, 524–533.

    Article  CAS  Google Scholar 

  69. McGuyer J.C., Vasile M.J., and Schubert R.W. (1997) Modeling a micromanufactured open recess-tip oxygen microelectrode. The 16th Southern Biomedical Engineering Conference, Biloxi, MS. New York, April 4–6.

    Google Scholar 

  70. Schneiderman G. and Goldstick T.K. (1978) Oxygen electrode design criteria and performance characteristics: recessed cathode. J. Appl. Physiol., 45(1), 145–154.

    CAS  Google Scholar 

  71. Xiao D., Yuan H.-Y., Li J., and Yu R.-Q. (1995) Surface-modified cobalt-based sensor as a phosphate-sensitive electrode. Anal. Chem., 67, 288–291.

    Article  CAS  Google Scholar 

  72. Meruva R.K. and Meyerhoff M.E. (1996) Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. Anal. Chem., 68, 2022–2026.

    Article  CAS  Google Scholar 

  73. Engblom S.O. (1999) Determination of inorganic phosphate in a soil extract using a cobalt electrode. Plant Soil, 206, 173–179.

    Article  Google Scholar 

  74. Wang J. and Bishop P. (2005) Development of a phosphate ion-selective microelectrode and its use in studies of the enhanced biological phosphorus removal (EBPR) process. Environ. Technol., 26, 381–388.

    Article  CAS  Google Scholar 

  75. De Marco R, Pejcic B., and Chen Z (1998) Flow injection potentiometric determination of phosphate in waste waters and fertilizers using a cobalt wire ion-selective electrode. Analyst, 123, 1635–1640.

    Article  CAS  Google Scholar 

  76. Chen Z, Grierson P and Adams M A (1998) Direct determination of phosphate in soil extracts by potentiometric flow injection using a cobalt wire electrode. Anal. Chim. Acta, 363, 191–197.

    Article  CAS  Google Scholar 

  77. Zou Z., Han J., Jang A., Bishop P.L., and Ahn C.H. (2007) A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate. Biosens. Bioelectron., 22, 1902–1907.

    Article  CAS  Google Scholar 

  78. Ploug H. and Jorgensen B.B. (1999) A net-jet flow system for mass transfer and microsensor studies of sinking aggregates. Marine Ecol. Progr. Ser., 176, 279–299.

    Article  CAS  Google Scholar 

  79. Francolini I., Donelli G., and Stoodley P. (2003) Polymer designs to control biofilm growth on medical devices. Rev. Environ. Sci. Biotechnol., 2(2-4), 307–319.

    Article  CAS  Google Scholar 

  80. Baker J.S. and Dudley L.Y. (1998) Biofouling in membrane systems-a review. Desal, 118, 81–89.

    Article  CAS  Google Scholar 

  81. Flemming H.C. (2002) Biofouling in water systems-cases, causes and countermeasures. Appl. Microbiol. Biotechnol., 59, 629–640.

    Article  CAS  Google Scholar 

  82. Callow M.E., Pitchers R.A., and Santos R. (1998) Non-biocidal anti-fouling coatings. In: Biodeterioration, Elsevier, New York, 43–48.

    Google Scholar 

  83. Li J., Helmerhorst E.J., Leone C.W., Troxler R.F., Yaskell T., Haffajee A.D., Socransky S.S., and Oppenheim F.G. (2004) Identification of early microbial colonizers in human dental biofilm. Appl. Micobiol., 97, 1311–1318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of this work by grants from the National Science Foundation (BES-0228603, BES-0529217), the National Institute of Environmental Health Sciences (NIEHS), the U.S. Environmental Protection Agency, and the University of Cincinnati Institute for Nanoscale Science and Technology. The authors also thank Frank Sauser for assistance with ORP MEA packaging, Dr. Fred Beyette and Alla Suresh Kumar for assistance with electrical signal conditioning, Dr. Peng Jin for assistance with beveling, and Tae-Sun Lim for assistance with DO MEA sensor fabrication and characterization [79–83].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Papautsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, JH., Seo, Y., Lee, W.H., Bishop, P., Papautsky, I. (2010). Needle-Type Multi-Analyte MEMS Sensor Arrays for In Situ Measurements in Biofilms. In: Shah, V. (eds) Emerging Environmental Technologies, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3352-9_6

Download citation

Publish with us

Policies and ethics