Skip to main content

“COMPASS 2” Satellite and Ground-Based Experiments

  • Chapter
  • First Online:
The Atmosphere and Ionosphere

Abstract

This review is devoted to modern methods of earthquake (EQ) prediction. Section 4.2 contains the first results of special satellite “COMPASS 2” destined for the detection of seism-electromagnetic (EM) effects. A whistler group in the higher-order guided mode was recorded. Probably it was propagating between two layers, caused by onion-like structure of inhomogeneities in the plasma sphere. In Section 4.3, ELF-VLF effects observed over seism-active regions by the satellite “INTERCOSMOS-24” are considered. It was revealed that the D-region conductivity decreases during the earthquake preparation at Kp < 3 and increases during geomagnetic disturbances. The seismic and geomagnetic effects are assumed to be attributable, respectively, to the increase in near-ground atmospheric conductivity caused by radon emanation during fissuring and to the precipitation of high-energy particles from the inner radiation belt. In Section 4.4, results of the earthquake precursor occurrence time analysis in quasi-static electric field of the surface atmosphere on the Kamchatka Peninsula are presented. The propagation velocity of the precursors and their occurrence time are estimated for different geophysical conditions. ULF-effects in magnetic fields as a result of aftershocks are considered. In Section 4.5, relation between precursors in quasistatic electric fields and in ionosphere parameters is analyzed. This relation reflects the processes of lithosphere–ionosphere interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gufeld, L.I.: Seismic process physical-chemistry aspects RSA, Academia of Cosmonavtics, IPE. Moscow, pp. 153 (2007)

    Google Scholar 

  2. Korepanov, V.E.: The modem trends in space electromagnetic instrumentation. Adv. Space Res. 32(3), 401406 (2003). doi:10.l016/S0273-–1177(03)9020-8

    Article  Google Scholar 

  3. Lichtenberger, J., Ferencz, O.E., Bodnar, L., Hamar, D., Steinbach, P.: Automatic whistler detector and analyzer system: Automatic whistler detector. J. Geoph. Res., 113, A12201 (2008). doi:10.1029/2008JA013467

    Article  Google Scholar 

  4. Mikhailov, Yu.M., Mikhailova, G.A., Kapustina, O.V., Druzhin, G.I., Smirnov, S.S., Ferencz, C.H., Lichtenberger, Ja., Bodnar, L., Korepanov, V.: E.: COMPASS 2 Satellite and ground base VLF-experiments. In: Abstracts. AIS-2008 “Atmosphere, Ionosphere, Safety”, July 7–12, Kaliningrad, pp. 31 (2008)

    Google Scholar 

  5. Ferencz, O.E., Bodnar, L., Ferencz, C., Hamar, D., Lichtenberger, J., Steinbach, P., Korepanov, V., Mikhailova, G., Mikhailov, Yu, Kuznetsov, V.: Ducted whistlers propagating in higher order guided mode and recorded on board of COMPASS-2 satellite by the advanced signal Analyzer and Sampler SAS2. J. Geoph. Res. 114, A003213 (2008). doi: 1029/2008. JA013542, (2009)

    Article  Google Scholar 

  6. Ferencz, O. E., Steinbach, P., Ferencz, C., Lichtenbcrger, J., Hamar, D., Berthelier, J.J., Lefeuvre, F., Parrot, M.: Full-wave modeling of long subionospheric propagation and fractional hop whistlers on electric field data of the DEMETFR satellite, paper presented at International Symposium on DEMETER, Cent. Nat. d’Etud, Spalialcs, Toulouse, France, 14–16 June (2006a)

    Google Scholar 

  7. Ferencz, O. E., Steinbach, P, Ferencz, C., Lichtenberger, J., Parrot, M., Lefeuvre, F.: UWB modeling of guided waves in anisotropic plasmas, paper presented at 2nd VERSIM Workshop 2006, Sodankyla Geophys. Obs., Sodunkyla, Finland (2006b)

    Google Scholar 

  8. Ruzhin, Yu.Ya., Zakharova, O.K.: Magnetic conjugation as a subject of investigation by the method of active experiments. Preprint N.23 (970), IZMIRAN, Moscow (1991)

    Google Scholar 

  9. Al’pert, Ya.L.: Radio-wave propagation and the ionosphere. Akad. Nauk SSSR, Moscow (1960)

    Google Scholar 

  10. Mikhailova, G.A., Golyavin, A.M., Mikhailov, Yu.M.: Dynamic spectra of VLF emissions in the topside ionosphere connected with Iranian earthquake of 21 June 1990 (The Intercosmos-24 Satellite). Geomag. Aeron. 31(5), 801 (1991)

    Google Scholar 

  11. Aksenov, V.I.: On the origin of the electromagnetic waves of extremely low frequency through the ionospheric plasma. Radiotekhn. Elektron. 11(6), 1030 (1966)

    Google Scholar 

  12. Aleshina, M.E., Voronov, S.A., Gal’per, A.M., et al.: On the relationship between the positions of seismic centers and regions of high-energy particle precipitations from the radiation belt. Kosmich. Issled. 30(1), 79 (1992)

    Google Scholar 

  13. Gal’perin, Yu.L, Gladyshev, V.A., Georgio, N.V., et al.: Precipitation of energetic trapped particles in the magnetosphere over the epicenter of a preparing earthquake. Kosmich. Issled. 30(1), 89 (1992)

    Google Scholar 

  14. Ginzburg, E.A., Malyshev, A.V., Proshkin, I.P., Pustovetov, V.P.: Correlation of strong earthquakes with variations of the radiation-belt particle flux. Geomag. Aeron. 34(3), 60 (1994)

    Google Scholar 

  15. Martynenko, S.I., Fuks, I.M., Shubova, R.S.: Response of the lower ionosphere to variations in near-ground atmospheric conductivity. Geomagn. Aeron. 34(2), 121 (1994)

    Google Scholar 

  16. Mikhailov, Yu.M., Mikhailova, G.A., Kapustina, O.V.: ELF and VLF Electromagnetic background in the topic ionosphere over seismically active areas. Geomag. Aeronom. 37(4), 450–455 (1997)

    Google Scholar 

  17. Rulenko O.P., Ivanov, A.V., Shumeiko, A.V. :A short-term atmospheric electric precursor of the Kamchatka earthquake of March 6, 1992 (M = 6.1). Dokl. Ross. Akad. Nauk. 326(6), 980–982 (1992)

    Google Scholar 

  18. Mikhailov, Yu. M.: Seismoelectromagnetic signals before earthquakes on Kamchatka, solar-terrestrial bonds and electromagnetic precursors of earthquakes. In: Rep.4th International Meeting, Paratunka, Kamchatka region, pp. 398–402, Aug 2007

    Google Scholar 

  19. Mikhailov, Yu. M.: On the possible role of atmospheric waves in the formation of electromagnetic precursors of earthquakes. In: 2nd All-Russia Workshop on Electromagnetic Sounding of the Earth. November 28–30, 2005, Moscow. Tsentr Geoelektromagnit. Issled, pp. 91. IFZ RAN, Moscow (2005)

    Google Scholar 

  20. Zubkov, S.I.: About dependence time and radius of appearance of electrotelluric precursors from energy of earthquake. Phys. Earth. 5, 101–106 (1987) (in Russian)

    Google Scholar 

  21. Korsunova, L.P., Khegai, V.V.: Seismoionospheric effects of strong crustal earthquakes in the Pacific Region. Geomagn. Aeron. 45(5), 706–711 (2005)

    Google Scholar 

  22. Sorokin, V.M., Chmyrev, V.M., Pohotelov, O.A., Liperovski, V.A.: Review of lithosphere-ionosphere relations at preparing of earthquake periods. In: Strachov, V.N., Liperovsky, V.A. (eds.) Short time prediction of catastrophe earthquakes by help of radiophysics ground-based-kosmic methods, pp.64–83. OIFZ RAS, Moscow (1998)

    Google Scholar 

  23. Husamiddinov, S.S.: Ionosphere Research Electrical and Magnetic Precursors of Earthquakes. In: Golovkov, V.P. (ed.) Tashkent FAS Uz SSR, pp. 90–111 (1983)

    Google Scholar 

  24. Korsunova, L.P., Hegai, V.V.: Analysis of seism-ionosphere disturbances on chain of Japan vertical sounding ionosphere station. Geom. Aeron. 48(3), 407–415 (2008) (in Russian)

    Google Scholar 

  25. Sidorin, A.Ya.: Dependence of appearance time of earthquakes precursors of epicenter distance. Reports of RAS. 245(4), 825–828 (1979)

    Google Scholar 

  26. Kim, V.P., Hegai, V.V.: About possibility of formation of metal ion layer in E-region of average-latitude of ionosphere before strong. Geom. Aeron. 33(5), 114–119 (1993)

    Google Scholar 

  27. Sorokin, V.M., Yaschenko, A.K., Hayakawa, M.: Formation mechanism of the lower ionospheric disturbances by the atmospheric electric current over a seismic region. J. Atmos. Sol.-Terr. Phys. 68(11), 1260–1268 (2006)

    Article  Google Scholar 

  28. Mikhailov, Yu.M., Mikhailova, G.A., Kapustina, O.V., Depueva, A.X., Buzevich, A.V., Druzhin, G.I., Smirnov, S.E., Firstov, P.P.: Variation of different atmosphere and ionosphere parameters in periods of earthquake preparing on Kamchatka. Preliminary results. Geom. Aeron. 42(6), 769–776 (2002)

    Google Scholar 

  29. Mikhailov, Yu.M.: On the properties of earthquake precursors in the electrostatic field of the surface atmosphere. Phys. Solid Earth. 43(4), 336–339 (2007)

    Article  Google Scholar 

  30. Korsunova, L.P., Khegai, V.V.: Medium-term ionospheric precursors to strong earthquakes Int. J. Geom. Aeron. 6, GI3005 (2006). doi:10.1029/2005 GI000122

    Article  Google Scholar 

  31. Solar-Geophysical Data. Coffey, H.E., Kroehl H. W. (eds.) Solar –Terrestrial Physics Divisions, NOAA, Boulder, CO (1999)

    Google Scholar 

  32. Hao, J., Tang, T., Li, D.: Progress in the research on atmospheric electric field anomaly as an index for short-impending prediction of earthquakes. J. Earthquake Prediction Res. 8(3), 241–255 (2000)

    Google Scholar 

  33. Rulenko, O.P.: Short time precursor in near Earth atmosphere electricity. Vulcanol. Seismol. 4, 57–68 (2000)

    Google Scholar 

  34. Smirnov, S.E.: Peculiarities of negative anomalies of electrical field at near Earth at Kamchatka. Geom. Aeron. 45(2), 282–287 (2005)

    Google Scholar 

  35. Ismagilov, V.S., Kopytenko, Yu.A., Hattori, K., Hayakawa, M.: Use of gradients and phase velocities of ULF geomagnetic disturbances for definition point of source of future strong Earthquake. Geom. Aeron. 46(3), 423–430 (2006)

    Google Scholar 

  36. Pulinets, S.A., Boyarchuk, K.A., Hegai, V.V., Kim, V.P., Lomonosov, A.M.: Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 26(8), 1209–1218 (2000)

    Article  Google Scholar 

  37. Virk, H.S., Singh, B.: Radon recording of Uttarkashi earthquake. Geoph. Res. Lett. 21(8), 737–740 (1994)

    Article  Google Scholar 

  38. Steinitz, G., Vulkan, U., Lang, D.: Monitoring of the tectonically related radon flux in Israel. Isr. Geol. Surv. Curr. Res. 10, 148–153 (1996)

    Google Scholar 

Download references

Acknowledgments

The authors thank Yu.Ya. Ruzhin, V.S. Dokukin, L.N. Leshenko, G.I. Druzhin, V.V. Bogdanov, O.E. Ferencz, D. Hamar, Ja. Lichtenberger, and P. Steibach for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Mikhailov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mikhailov, Y.M. et al. (2010). “COMPASS 2” Satellite and Ground-Based Experiments. In: Bychkov, V., Golubkov, G., Nikitin, A. (eds) The Atmosphere and Ionosphere. Physics of Earth and Space Environments. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3212-6_4

Download citation

Publish with us

Policies and ethics