Skip to main content

Formation of Aerosols in the Atmosphere

  • Chapter
  • First Online:
The Atmosphere and Ionosphere

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

Atmospheric aerosol is one of the most important factors affecting the Earth’s climatic and weather conditions. The study of the mechanisms of formation and evolution of atmospheric aerosols is of primary importance for predictions of the climatic changes on our planet. We hope that this short overview of the modern state of art in aerosol science will be of use to all those who are involved to the study of atmospheric processes that form the Earth’s climate. We introduce the readers to the basics of physical chemistry of aerosols. Special attention is given to the latest achievements in the theory of particle formation and their subsequent growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedlander, S.K.: Smokes, Haze, Mist. Wiley, New York/London (2000)

    Google Scholar 

  2. Hidy, J.M., Brock, J.R.: The dynamics of aerocolloidal systems. Pergamon, Oxford (1970)

    Google Scholar 

  3. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley, New York (1998)

    Google Scholar 

  4. Taylor, F.W.: The greenhouse effect and climate change revisited. Rep. Prog. Phys. 65, 1 (2002)

    Article  Google Scholar 

  5. Graedel, T.E., Crutzen, P.J.: The changing atmosphere. Sci. Am. 261, 58 (1989)

    Article  Google Scholar 

  6. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coslkey Jr., J.A., Hansen, J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255, 423 (1992)

    Article  Google Scholar 

  7. Charlson, R.J., Heitzenberg, R.L.: Aerosol forcing of climate. Wiley, New York (1995)

    Google Scholar 

  8. Pruppacher, H.R., Klett, J.D.: Microphysics of clouds and precipitation. Reidel, Dordrecht, The Netherlands (1991)

    Google Scholar 

  9. Fuchs, N.A.: Mechanics of aerosols. Pergamon, New York (2002)

    Google Scholar 

  10. Reist, P.C.: Introduction to aerosol science. Macmillan, New York (1984)

    Google Scholar 

  11. Williams, M.M.R., Loyalka, S.K.: Aerosol science, theory and practice. Pergamon, Oxford (1991)

    Google Scholar 

  12. Kulmala, M., Vehkmäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., McMurry, P.H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004)

    Article  Google Scholar 

  13. Alpin, K.L., Harrison, R.G.: A computer controlled Gerdien atmospheric ion counter. Rev. Sci. Instrum. 71, 3037 (2000)

    Article  Google Scholar 

  14. Eisele, F.L., Hanson, D.R.: First measurements of prenucleation molecular clusters. J. Phys. Chem. 104, 830–836 (2000)

    Google Scholar 

  15. Gamera-Castano, M., de la Mora, F.: A condensation nucleus counter (CNC) sensitive to singly charged sub-nanometer particles. J. Aerosol Sci 31, 757 (2000)

    Article  Google Scholar 

  16. Aitchison, J., Brown, J.A.: The lognormal distribution function. Cambridge University Press, Cambridge (1957)

    Google Scholar 

  17. Deirmenjian, D.: Electromagnetic scattering on spherical polidispersions. Elsevier, New York (1969)

    Google Scholar 

  18. Abraham, F.F.: Homogeneous nucleation theory. Academic, New York (1974)

    Google Scholar 

  19. Kaschiev, D.: Nucleation: Basic principles and application. Butterworth, Heinemann (2000)

    Google Scholar 

  20. Laaksonen, A., Talanquer, V., Oxtoby, D.W.: Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 189 (1995)

    Article  Google Scholar 

  21. Anisimov, M.A.: Nucleation: theory and experiment. Russ. Chem. Rev. 72, 591 (2003)

    Article  Google Scholar 

  22. Hill, T.: Statistical mechanics. Principles and selected applications. McGraw-Hill, New York (1956)

    Google Scholar 

  23. Gross, D.H.E.: Microcanonical thermodynamics. World Scientific, Singapore (2001)

    Book  Google Scholar 

  24. Landau, L.D., Lifshits, E.M.: Statistical physics. Nauka, Moscow (1998)

    Google Scholar 

  25. Lushnikov, A.A., Kulmala, M.: Dimer in nucleating vapor. Phys. Rev. E58, 3157 (1998)

    Google Scholar 

  26. Lushnikov, A.A., Kulmala, M.: Nucleation controlled formation and growth of disperse particles. Phys. Rev. Lett. 81, 5165 (1998)

    Article  Google Scholar 

  27. Castleman Jr., A.W., Holland, P.M., Keesee, R.G.: The properties of ion clusters and their relationship to heteromolecular nucleation. J. Chem. Phys. 68, 1760 (1978)

    Article  Google Scholar 

  28. Yu, F., Turco, R.P.: From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001)

    Article  Google Scholar 

  29. Svensmark, H.: Influence of cosmic rays on Earth’s climate. Phys. Rev. Lett. 81, 5027 (1998)

    Article  Google Scholar 

  30. Reiss, H., Tabahzade, A., Talbot, J.: Molecular theory of vapor phase nucleation: the physically consistent cluster. J. Chem. Phys. 92, 1266 (1990)

    Article  Google Scholar 

  31. Ford, I.J., Harris, S.A.: Molecular cluster decay viewed as escape from a potential of mean force. J. Chem. Phys. 120, 4428 (2004)

    Article  Google Scholar 

  32. Fuchs, N.A., Sutugin, A.G.: High–dispersed aerosols. In: Hidy, G.M., Brock, J.R. (eds.) Topics in current aerosol research, vol. 2, pp. 1–60, Pergamon, Oxford (1971)

    Google Scholar 

  33. Lushnikov, A.A., Kulmala, M.: Flux–matching theory of particle charging. Phys. Rev. E70, 046413 (2004)

    Google Scholar 

  34. Lushnikov, A.A., Kulmala, M.: Charging of aerosol particles in the near free-molecule regime. Eur. Phys. J. D29, 345 (2004)

    Google Scholar 

  35. Arnold, F.: Multi-ion complexes in the stratosphere – implication for trace gases and aerosols. Nature 284, 610 (1980)

    Article  Google Scholar 

  36. Arnold, F., Stilp, T., Busen, R., Shauman, U.: Jet engine exhaust chemi-ion measurements: implication for gaseous SO2 and H2SO4. Atmos. Environ. 32, 3073 (1998)

    Article  Google Scholar 

  37. Castleman Jr., A.V.: Nucleation and molecular clustering about ions. Adv. Colloid Interface Sci. 10, 73 (1979)

    Article  Google Scholar 

  38. Horrak, U., Salm, J., Tammet, H.: Burst of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13909 (1998)

    Article  Google Scholar 

  39. Karher, B., Yu, F., Schroeder, F.P., Turco, R.P.: Ultrafine aerosol particles in aircraft plumes: analysis of growth mechanisms. Geophys. Res. Lett. 25, 2793 (1998)

    Article  Google Scholar 

  40. Raes, F., Augustin, J., Vandingenen, R.: The role of ion induced aerosol formation in the lower atmosphere. J. Aerosol Sci. 17, 466 (1986)

    Article  Google Scholar 

  41. Turco, R.P., Zhao, J.-X., Yu, F.: A new source of tropospheric aerosols: ion–ion recombination. Geophys. Res. Lett. 25, 635 (1998)

    Article  Google Scholar 

  42. Yu, F., Turco, R.P.: The role of ions in the formation and evolution of particles in aircraft plumes. Geophys. Res. Lett. 24, 1927 (1997)

    Article  Google Scholar 

  43. Yu, F., Turco, R.P.: Ultrafine aerosol formation via ion-mediated nucleation. Geophys. Res. Lett. 27, 883 (2000)

    Article  Google Scholar 

  44. Yu, F., Turco, R.P.: On the contribution of lightning to ultrafine aerosol formation. Geophys. Res. Lett. 27, 1453 (2000)

    Google Scholar 

  45. Lushnikov, A.A., Kulmala, M.: A kinetic theory of particle charging in the free-molecule regime. J. Aerosol Sci. 39, 1069 (2005)

    Article  Google Scholar 

  46. Marlow, W.H.: Derivation of the aerosol collision rates for singular attractive contact potentials. J. Chem. Phys. 73, 6284 (1980)

    Article  Google Scholar 

  47. Pui, D.Y.H., Fruin, S., McMurry, P.H.: Unipolar charging of fine particles. Aerosol Sci Technol. 8, 173 (1988)

    Article  Google Scholar 

  48. Hoppel, W.A. Frick, G.M.: Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 5, 1 (1986)

    Article  Google Scholar 

  49. Friedlander, S.K.: Dynamics of aerosol formation by chemical reactions. Ann. N Y Acad. Sci. 354, 1 (1983)

    Google Scholar 

  50. Prastinis, S.E., Friedlander, S.K., Pearlstein, A.J.: Aerosol reactor theory: stability and dynamics of a continuous stirred tank aerosol reactor. AiChE J. 32, 177 (1986)

    Article  Google Scholar 

  51. McGraw, R., Marlow, W.H.: The multistate kinetics of nucleation in the presence of an aerosol. J. Chem. Phys. 78, 2542 (1983)

    Article  Google Scholar 

  52. McMurry, P.H., Wilson, J.C.: Growth laws for formation of secondary ambient aerosols: implication for chemical conversion mechanisms. Atmos. Environ. 16, 121 (1982)

    Article  Google Scholar 

  53. Lushnikov, A.A., Kulmala, M.: Source enhanced condensation in monocomponent disperse systems. Phys. Rev. E52, 1658 (1995)

    Google Scholar 

  54. Lushnikov, A.A., Kulmala, M., Arstila, H., Zapadinskii, E.L.: Source enhanced condensation of a single component vapor in the transition regime. J. Aerosol Sci. 27, 853 (1996)

    Article  Google Scholar 

  55. Pratsinis, S.E.: Simultaneous nucleation, condensation and coagulation in aerosol reactors. J. Colloid Interface Sci. 124, 416 (1988)

    Article  Google Scholar 

  56. Jacobson, M.Z., Turko, R.P.: Simulating condensational growth, evaporation and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Technol. 22, 73 (1995)

    Article  Google Scholar 

  57. Tsang, T.H., Rao, A.: Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. Technol. 9, 133 (1988)

    Article  Google Scholar 

  58. Warren, D.R., Seinfeld, J.H.: Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation. Aerosol Sci. Technol. 4, 31 (1985)

    Article  Google Scholar 

  59. Aikin, A.C., Pesnel, W.D.: Uptake coefficient of charged aerosols – implication for atmospheric chemistry. Geophys. Res. Lett. 25, 1309 (1998)

    Article  Google Scholar 

  60. Davis, E.J.: Transport phenomena with single aerosol particle. Aerosol Sci. Technol. 2, 121 (1983)

    Google Scholar 

  61. Davidovits, P., Hu, J.H., Worsnop, D.R., Zahnister, M.S., Kolb, C.E.: Entry of gas molecules into liquids. Faraday Discuss. 100, 65 (1995)

    Article  Google Scholar 

  62. Li, W., Davis, E.J.: Aerosol evaporation in the transition regime. Aerosol Sci. Technol. 25, 11 (1995)

    Google Scholar 

  63. Natanson, G.M., Davidovits, P., Worsnop, D.R., Kolb, C.E.: Dynamics and kinetics at the gas–liquid interface. J. Phys. Chem. 100, 13007 (1996)

    Article  Google Scholar 

  64. Shi, B., Seinfeld, J.H.: On mass transport limitation to the rate of reaction of gases in liquid droplets. Atmos. Environ. 25A, 2371 (1991)

    Google Scholar 

  65. Aalto, P., Hammeri, K., Becker, S., Weber, R., Salm, J., Mäkelä, J.M., Hoell, C., O’Dowd, C., Karlsson, H., Hansson, H.-C., Väkevä, M., Buzorius, G., Kulmala, M.: Physical haracterization of aerosol particles during nucleation events. Tellus 53B, 344 (2001)

    Google Scholar 

  66. Arey, J., Atkinson, R., Aschmann, S.M.: Product study of gas-phase reactions of monoterpenes with the OH radical in the presence of NO x . J. Geophys. Res. 96, 18539 (1990)

    Article  Google Scholar 

  67. Juozaitis, A., Trakumas, S., Girgzdiene, D., Girgzdis, A., Sopauskiene, D., Ulevicius, V.: Investigation of gas-to-particle conversion in the atmosphere. Atmos. Res. 41, 445 (1996)

    Article  Google Scholar 

  68. Boy, M., Kulmala, M.: Nucleation events on the continental boundary layer: influence of physical and meteorological parameters. Atmos. Chem. Phys. 2, 1 (2002)

    Article  Google Scholar 

  69. Lushnikov, A.A., Kulmala, M.: Foreign aerosols in nucleating vapor. J. Aerosol Sci. 31, 651 (2000)

    Article  Google Scholar 

  70. Lushnikov, A.A., Kulmala, M.: Nucleation burst in a coagulating system. Phys. Rev. E62, 4932 (2000)

    Google Scholar 

  71. Lushnikov, A.A., Kulmala, M.: Kinetics of nucleation controlled formation and condensational growth of disperse particles. Phys. Rev. E63, 061109 (2001)

    Google Scholar 

  72. Griffin, R., Cocker, D.R., Flagan, R., Seinfeld, J.H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 104, 3555 (1999)

    Article  Google Scholar 

  73. Hoffmann, Th, Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R., Seinfeld, J.: Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189 (1997)

    Article  Google Scholar 

  74. Kerminen, V.-M., Virkkula, A., Hillamo, R., Wexler, A.S., Kulmala, M.: Secondary organics and atmospheric cloud condensation nuclei production. J. Geophys. Res. 105, 9255 (2000)

    Article  Google Scholar 

  75. Korhonen, H., Lehtinen, K., Kulmala, M.: Multicomponent aerosol dynamic model UHMA: model development and validation. Atmos. Chem. Phys. Discuss. 22, 471 (2004)

    Article  Google Scholar 

  76. Kulmala, M., Pirjola, L., Mäkelä, J.M.: Stable sulfate clusters as a source of new atmospheric particles. Nature 404, 66 (2000)

    Article  Google Scholar 

  77. Lyubovtseva, YuS, Sogacheva, L., Dal-Maso, M., Bonn, B., Keronen, P., Kulmala, M.: Seasonal variations of trace gases, meteorological parameters, and formation of aerosols in boreal forests. Boreal Env. Res. 10, 493 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lushnikov, A.A., Zagaynov, V.A., Lyubovtseva, Y.S. (2010). Formation of Aerosols in the Atmosphere. In: Bychkov, V., Golubkov, G., Nikitin, A. (eds) The Atmosphere and Ionosphere. Physics of Earth and Space Environments. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3212-6_2

Download citation

Publish with us

Policies and ethics