Skip to main content

Cotton Source/Sink Relationships

  • Chapter
Book cover Physiology of Cotton

Abstract

Metabolite source/sink relationships govern assimilate partitioning, developmental rates, and fruit abscission in cotton. This subject is, therefore, of primary importance in the improvement of cotton plant types and in cotton culture. Here, we focus on research which has led to an understanding of metabolite source/sink interactions and secondary physiological effects resulting from those interactions. Much of this research has been done in controlled environments and some of it has been aimed at the development and testing of crop simulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Acock, B. and M.C. Acock. 1989. Calculating air leakage rates in controlled-environment chambers containing plants. Agron. J. 81:619-623.

    Article  Google Scholar 

  • Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated C02. Plant Cell and Environ. 14:869-875.

    Article  CAS  Google Scholar 

  • Ashley, D.A. 1972. 14C-labelled photosynthate translocation and utilization in cotton plants. Crop Sci. 12:69-74.

    Article  CAS  Google Scholar 

  • Baker, D.N. 1965. Effects of certain environmental factors on net assimilation in cotton. Crop Sci. 5:53-56.

    Article  Google Scholar 

  • Baker, E.A. 1982. Chemistry and morphology of plant epicuticular waxes. pp. 139-165. In: D.J. Cutler, K.L. Alvin and C.E. Price (eds.). The Plant Cuticle. Academic Press, London.

    Google Scholar 

  • Baker, J.T. and L.H. Allen, Jr. 1993. Effects of C02 and temperature on rice: A summary of five growing seasons. J. Agric. Meterol. (Toyko) 48(5):575-582.

    Google Scholar 

  • Benedict, C.R. 1984. Physiology. pp. 151-200. In: R.J. Kohel and C.F. Lewis (eds.). Cotton. Amer. Soc. Agronomy, Madison WI.

    Google Scholar 

  • Bielorai, H. and P.A.M. Hopmans. 1975. Recovery of leaf water potential, transpiration, and photosynthesis of cotton during irrigation cycles. Agron. J. 67:629-632.

    Article  Google Scholar 

  • Bland, W.L. 1993. Cotton and soybean root system growth in three soil temperature regimes. Agron. J. 85:906-911.

    Article  Google Scholar 

  • Boyer, J.S. 1964. Effects of osmotic water stress on metabolic rates of cotton plants with open stomata. Plant Physiol. 40:229-233.

    Article  Google Scholar 

  • Boyer, J.S. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46:233-235.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, R.R. and M.J.M. Römkens. 1965. Fruiting and growth characteristics of cotton in relation to soil moisture tension. Agron. J. 57:135-140.

    Article  Google Scholar 

  • Constable, G. A. 1991. Mapping the production and survival of fruit on field-grown cotton. Agron. J. 83:374-378.

    Article  Google Scholar 

  • Constable, G. A. and H.M. Rawson. 1980a. Effect of leaf position, expansion and age on photosynthesis, transpiration and water use efficiency of cotton. Aust. J. Plant. Physiol. 7:89-100.

    Article  Google Scholar 

  • Eaton, F.M. 1955. Physiology of the cotton plant. Ann. Rev. Plant Physiol. 6:299-328.

    Article  CAS  Google Scholar 

  • Eaton, F.M. and D.R. Ergle. 1953. Relationship of seasonal trends in carbohydrate and nitrogen levels and effects of girdling and spraying with sucrose and urea to the nutritional interpretation of boll shedding in cotton. Plant Physiol. 28:503-520.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, J.R. 1986. Temperature effects on growth, development, and fiber properties. In: J.R. Mauney and J. McD. Stewart (eds.), Cotton Physiology, The Cotton Foundation, Memphis. pp.47-56.

    Google Scholar 

  • Guinn, G. 1976. Nutritional stress and ethylene evolution by young cotton bolls. Crop Sci. 16:89-91.

    Article  CAS  Google Scholar 

  • Guinn, G. 1985. Fruiting of cotton. III. Nutritional stress and cutout. Crop Sci. 25:981-985.

    Article  Google Scholar 

  • Hall, W.C. 1952. Evidence on the auxin-ethylene balance hypothesis of foliar abscission. Botan. Gaz. 113:310-322.

    Article  CAS  Google Scholar 

  • Hesketh, J.D. 1968. Effect of light and temperature during plant growth on subsequent leaf CO2 assimilation rates under standard conditions. Aust. J. Biol. Sci. 21:235-241.

    Google Scholar 

  • Hesketh, J.D. and A. Low. 1968. The effect of temperature on components of yield and fiber quality of cotton varieties of diverse origin. Cotton Growing Rev. 45:243-257.

    Google Scholar 

  • Johnson, R.E. and F.T. Addicott. 1967. Boll retention in relation to leaf and boll development in cotton (Gossypium hirsutum L.). Crop Sci. 7:571-575.

    Article  Google Scholar 

  • Jordan, W.R. 1970. Growth of cotton seedlings in relation to maximum daily plant-water potential. Agron. J. 62:699-701.

    Article  Google Scholar 

  • Kimball, B.A. and Mauney, J.R. 1993. Response of cotton to varying CO2, irrigation, and nitrogen: Yield and growth. Agron. J. 85:706-712.

    Article  CAS  Google Scholar 

  • Kornish, K. 1988. Why does photosynthesis decline with leaf age? pp. 50-55. Proc. 1988 Beltwide Prod. Confs., National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Long, S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ. 14:729-739.

    Article  CAS  Google Scholar 

  • Marani, A. 1979. Growth rate of cotton bolls and their components. Field Crops Res. 2:169-175.

    Article  Google Scholar 

  • Mason, T.G. 1922. Growth and abscission in Sea Island cotton. Ann. Bot. 36:457-484.

    Google Scholar 

  • Meyer, R.F. and J.S. Boyer. 1972. Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta (Berl.) 108:77-87.

    Article  CAS  Google Scholar 

  • Meyer, V.G. 1966. Environmental effects on the differentaition of abnormal cotton flowers. Amer. J. Bot. 53:976-980.

    Article  Google Scholar 

  • Morgan, P.W. 1967. Plant growth control by ethylene. pp. 151-155. 1967 Proc. Beltwide Cotton Prod Res. Confs. National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Morgan, P.W. and H.W. Gausman. 1966. Effects of ethylene on auxin transport. Plant Physiol. 41:45-52.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, P.W. and W.C. Hall. 1964. Accelerated release of ethylene by cotton following application of indole-3-acetic acid. Nature 201:99.

    Article  CAS  Google Scholar 

  • Munro, J.M. 1987. Cotton. 2nd. Ed. Longman-Wiley, New York.

    Google Scholar 

  • Oosterhuis, D.M. 1990. Growth and development of a cotton plant. In: W.N. Miley and D.M. Oosterhuis (eds.). Nitrogen nutrition of cotton: Practical issues. ASA, CSSA, and SSSA, Madison, WI. pp. 1-24.

    Google Scholar 

  • Oosterhuis, D.M. and D. Zhao. 1993. Physiological effects of PGR-IV on the growth and yield of cotton. p. 1270. 1993 Proc. Beltwide Cotton Prod. Res. Confs. National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Peng, S. and D.R. Krieg. 1991. Single leaf and canopy photosynthesis response to plant age in cotton. Agron. J. 83:704-708.

    Article  Google Scholar 

  • Radin, J.W. 1983 .Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant, Cell and Environ. 6:65-68.

    Google Scholar 

  • Radin, J.W. and M.P. Eidenbock. 1986. P nutrition and hydraulic conductivity. Plant Physiol. 82:869-871.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, V.R. 1993. Modeling mepiquat chloride-temperature interactions in cotton: the model. Computers and Electronics in Agr. 8:227-236.

    Article  Google Scholar 

  • Reddy, V.R. 1994. Modeling cotton growth and phenology in response to temperature. Computers and Electronics in Agr. 10:63-73.

    Article  Google Scholar 

  • Sinclair, T.R. and M.M. Ludlow. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust. J. Plant Physiol. 12:213-217.

    Article  Google Scholar 

  • Stewart, J.McD. 1986. Integrated events in the flower and fruit. pp. 261-297. In: J.R. Mauney and J. McD. Stewart (eds.). Cotton Physiology. Cotton Foundation, Memphis, Tenn.

    Google Scholar 

  • Taylor, H.M. and B. Klepper. 1974. Water relations of cotton. I. Root growth and water use as related to top growth and soil water content. Agron. J. 66:584-588.

    Article  Google Scholar 

  • Taylor, H.M. and L.F. Ratliff.. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 108:113-119.

    Article  Google Scholar 

  • Thomas R.B. and B.R. Strain. 1991. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 96:627-634.

    Article  PubMed  CAS  Google Scholar 

  • Warner, D.A. and J.J. Burke. 1993. Cool night temperatures alter leaf starch and photosystem II: Chlorophyll fluorescence in cotton. Agron. J. 85:836-840.

    Article  CAS  Google Scholar 

  • Watson, D.J. 1947. Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. N.S. 11:41-76.

    CAS  Google Scholar 

  • Went, F.W. 1963. The concept of the phytotron. In: L.T. Evans (ed.). Environmental Control of Plant Growth. Academic Press. New York & London.

    Google Scholar 

  • Winter, K. and M. Koniger. 1991. Dry matter production and photosynthetic capacity in Gossypium hirsutum L. under conditions of slightly sub-optimal leaf temperatures and high levels of irradiance. Oecologia 87:190-197.

    Article  Google Scholar 

  • Wullschleger, S.D. and D.M. Oosterhuis. 1990a. Photosynthesis of individual field-grown cotton leaves during ontogeny. Photosynthesis Res. 23:163-170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baker, D.N., Baker, J.T. (2010). Cotton Source/Sink Relationships. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_8

Download citation

Publish with us

Policies and ethics