Skip to main content

Mechanisms of Cotton Resistance to Arthropod Herbivory

  • Chapter

Abstract

The cotton crop is host to a wide range of arthropod pests (Hargreaves, 1948; Room, 1979a). Key pests, i.e. those that are persistent, occur perennially, and usually reach economically damaging levels (Hearn and Fitt, 1992) have been characterized for most cotton-cropping systems worldwide. The identification and biology of key cotton pests, their economic importance, and methods for their control have been the focus of recent reviews by Frisbie et al. (1989), Hearn and Fitt (1992), Fitt (1994), Luttrel (1994), Luttrel et al. (1994), Ramalho (1994), Sugonyaev (1994), Vaissayre (1994), Matthews and Tunstall (1994), Hillocks (1995), and Pyke and Brown (1996).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aarssen, L.W. 1995. Hypotheses for the evolution of apical dominance in plants: Implications for the interpretation of overcompensation. Oikos 74:149-156.

    Google Scholar 

  • Aarssen, L.W. and D.L. Irwin. 1991. What selection: herbivory or competition? Oikos 60:261-262.

    Google Scholar 

  • Agrawal, A.A. and R. Karban. 1997. Domatia mediate plant-arthropod mutualism. Nature 387:562-563.

    CAS  Google Scholar 

  • Baluch, A.A. 1988. A review on the management of cotton whitefly. Pakistan Cottons 32:214-233.

    Google Scholar 

  • Baldwin, I.T. 1993. Chemical changes rapidly induced by folivory. pp. 1-23 In: Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Baldwin, I.T. and T.E. Ohnmeiss. 1994. Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris. Ecology 75: 1003-1014.

    Google Scholar 

  • Baldwin, I.T. and E.A. Schmelz. 1994. Constraints on an induced defense - the role of leaf area. Oecologia 97: 424-430.

    Google Scholar 

  • Bangerth, F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Physiol. Plant. 76:608-614.

    CAS  Google Scholar 

  • Bardner, R. and K.E. Fletcher. 1974. Insect infestations and their effects on the growth and yield of field crops: A review. Bull. Ent. Res. 64:141-160.

    Google Scholar 

  • Basey, J.M. and S.H. Jenkins. 1993. Production of chemical defenses in relation to plant growth rate. Oikos 68:323-328.

    CAS  Google Scholar 

  • Bell, A.A. 1986. Physiology of secondary products. pp. 597-621. In: J.R. Mauney and J.McD. Stewart (eds.). Cotton Physiology. The Cotton Foundation, Memphis, Tenn.

    Google Scholar 

  • Bennett, A.L. 1993. Biology of Apion soleatum Wagner (Coleoptera: Apionidae) relative to cotton production in South Africa. African Entomology 1:35-47.

    Google Scholar 

  • Bergelson, J., and Crawley, M.J. 1992 Herbivory and Ipomopsis aggregata: the disadvantages of being eaten. Am. Nat. 139:870-882.

    Google Scholar 

  • Berryman, A.A. 1991. Population theory: an essential ingredient in pest prediction, management, and policy making. Am. Entomol. 37:138-142.

    Google Scholar 

  • Bradshaw, A.D. 1965. Evolutioinary signifficance of phenotipic plasticity in plants. Adv. Genet. 13:115-155.

    Google Scholar 

  • Brandenburg, R.L. and G.G. Kennedy. 1981. Overwintering of the pathogen Entomophtora floridana and its host, the twospotted spider mite. J. Econ. Entomol. 74:428-431.

    Google Scholar 

  • Brody, A.K. and R. Karban. 1989. Demographic analysis of induced resistance against spider mites (Acari: Tetranychidae) in cotton. J. Econ. Entomol. 82: 462-465.

    Google Scholar 

  • Brody, A.K. and R. Karban. 1992. Lack of a tradeoff between constitutive and induced defenses among varieties of cotton. Oikos 65:301-306.

    Google Scholar 

  • Broodryk, S.W. and G.W. Matthews. 1994. Dysdercus (Hemiptera: Pyrrhocoridae) and other heteroptera. pp. 267-284. In: G.A. Matthews and J.P. Tunstall (eds.). Insects Pests of Cotton. CAB International, Wallingford.

    Google Scholar 

  • Brook, K.D. 1984. Review of the effects of damage on the cotton plant. Australian Cotton Growers Res. Conf, Toowoomba, pp. 228-235.

    Google Scholar 

  • Canerday, T.D. and F.S. Arant. 1964a. The effect of late season infestations of the strawberry spider mite, Tetranychus atlanticus, on cotton production. J. Econ.Entomol. 57:931-933.

    Google Scholar 

  • Cannon, R.J.C. 1995. Bacillus thuringiensis in pest control. Plant Microbial Biotechnol. Res. Series. 4:190-200.

    Google Scholar 

  • Carlton, B.C. and C. Gawron-Burke. 1993. Genetic improvement of Bacillus thuringiensis for bioinsecticide development. pp. 43-61 In: L. Kim (ed.). Advanced Engineered Pesticide. Marcell Dekker Inc., New York.

    Google Scholar 

  • Coley, P.D. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531-536.

    Google Scholar 

  • Crawley, M.J. 1983. Herbivory. The Dynamics of Animalplant interactions. Studies in Ecology, Vol. 10. Blackwell Scientific Publications, London, 437 pp.

    Google Scholar 

  • Crawley, M.J. 1987. Benevolent herbivores?Trends Ecol. Evol. 2: 167-168.

    PubMed  CAS  Google Scholar 

  • Culp, T.W. 1994. Genetic contributions to yield in cotton. pp. 321-360 In: G.A. Slafer (ed.). Genetic Improvement of Field Crops. CRC Press, New York.

    Google Scholar 

  • Dale, J.E. and T.H. Coaker. 1958. Some effects of feeding by Lygus vosseleri Poop. (Heteroptera, Miridae) on the stem apex of the cotton plant. Ann. appl. Biol. 46:423-429.

    Google Scholar 

  • Duncombe, W.G. 1977. Cotton losses caused by spider mites (Acarina: Tetranychidae). Rodhesia Agric. J. 74:141-146.

    Google Scholar 

  • El-Zik, K.M. and P.M. Thaxton. 1989. Genetic improvement for resistance to pests and stresses in cotton. pp. 191-224. In: R.E. Frisbie, K.M. El-Zik, and L.T. Wilson (eds.). Integrated Pest Management Systems and Cotton Production. John Wiley & Sons, New York.

    Google Scholar 

  • Evans, L.T. 1993. Crop evolution, adaptation and yield. Cambridge Univ Press, Cambridge, 500 pp.

    Google Scholar 

  • Evenson, J.P. 1969. Effects of floral and terminal bud removal on the yield and structure of the cotton plant in the Ord Valley, North Western Australia. Cotton Grow. Rev. 46:37-44.

    Google Scholar 

  • Farnsworth, K.D. and K.J. Niklas. 1995. Theories of optimization, form and function in branching architecture. Functional Ecol. 9:355-363.

    Google Scholar 

  • Fitt, G.P. 1994. Cotton pest management: Part 3. An Australian Perspective. Annu. Rev. Entomol. 39:543-562.

    Google Scholar 

  • Forrester, N.W. 1994. Resistance management options for conventional Bacillus thuringiensis and transgenic plants in Australian summer field crops. Biocontrol Sci. Technol. 4: 549-553.

    Google Scholar 

  • Forrester, N.W. and B. Pyke. 1997. The Bt report. The Australian Cottongrower 17: 23.

    Google Scholar 

  • Franco, M. 1986. The influence of neighbours on the growth of modular organisms with an example from trees. Phil. Trans. R. Soc. Lond. B313:209-225.

    Google Scholar 

  • Fryxell, P.A. 1978. Gossypium turneri (Malvaceae), a new species from Sonora, Mexico. Madroño 25:155-159.

    Google Scholar 

  • Futuyama, D.J. and R.M. May. 1991. The coevolution of plant-insect and host-parasite relationships. pp. 139-166 In: R.J. Berry, T.J. Crawford, and G.M. Hewitt (eds.). Genes in Ecology. The 33rd symposium of the British Ecological Soc., Univ. East of Anglia, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Gannaway, J.R. 1994. Breeding for insect resistance. In: Insects pests of cotton, G.A. Matthews and J.P. Tunstall (eds.), pp. 431-453. CAB International, Wallingford.

    Google Scholar 

  • Gehring, C.A. and T.G. Whitham. 1994. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends. Eco. Evol. 9: 251-255.

    CAS  Google Scholar 

  • Gifford, R.M. 1992. Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: Implications for the global carbon cycle. Advances in Bioclimatology 1:25-58.

    Google Scholar 

  • Godfray, H.C.J. 1995. Communication between the first and third trophic levels: An analysis using biological signalling theory. Oikos 72:367-374.

    Google Scholar 

  • Gubanov, G.Y. 1966. Physiology of the opening of cotton bolls. Soviet Plant Physiol. 13: 756-761.

    Google Scholar 

  • Hardwick, R.C. 1986. Physiological consequences of modular growth in plants. Phil. Trans. R. Soc. Lond. B 313:161-173.

    Google Scholar 

  • Hargreaves, H. 1948. List of recorded cotton insects of the world. Commonweakth Institute of Entomology, London.

    Google Scholar 

  • Harp, S.J. and V.V. Turner. 1976. Effects of thrips on cotton development in the Texas Blacklands. The Southern Entomologist 140:40-45.

    Google Scholar 

  • Harris, P. 1974. A possible explanation of plant yield increases following insect damage. Agro Ecosystems 1:219-225.

    Google Scholar 

  • Hearn, A.B. 1972. Cotton spacing experiments in Uganda. J. Agric. Sci. 78:13-25.

    Google Scholar 

  • Hearn, A.B. and G.A. Constable. 1984. Cotton. pp. 495-527. In: P.R. Goldsworthy and N.M. Fisher (eds.). The Physiology of Tropical Field Crops, John Wiley and Sons, New York.

    Google Scholar 

  • Hearn, A.B. and G.D. da Roza. 1985. A simple model for crop management application for cotton (Gossypium hirsutum L). Field Crops Res. 12:49-69.

    Google Scholar 

  • Hearn, A.B. and G.P. Fitt. 1992. Cotton cropping systems. pp. 84-142. In: C.J. Pearson (ed.). Ecosystems of the World. 18. Field Crop Ecosystems. Elsevier, Amsterdam.

    Google Scholar 

  • Hearn, A.B. and P.M. Room. 1979. Analysis of crop development for cotton pest management. Prot. Ecol. 1:265-277.

    Google Scholar 

  • Hector, D.J. and I.D. Hodkinson. 1989. Stickiness in cotton. CAB International, Wallingford, 43 pp.

    Google Scholar 

  • Hedin, P.A. and J.C. McCarty, Jr. 1991. Effects of kinetin formulations of allelochemicals and agronomic traits of cotton. J. Agric. and Food Chem. 39:549-553.

    CAS  Google Scholar 

  • Hedin, P.A. and J.C. McCarty, Jr. 1994b. Effects of several commercial plant growth regulator formulations on yield and allelochemicals of cotton (Gossypium hirsutum L.). J. Agric. Food Chem. 42:1355-1357.

    CAS  Google Scholar 

  • Herms, D.A. and W.J. Mattson. 1992. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67:283-335.

    Google Scholar 

  • Hillocks, R.J. 1995. Integrated pest management of insect pests, diseases and weeds of cotton in Africa. Integrated Pest Management Reviews 1:31-47.

    Google Scholar 

  • Hooker, A.L. 1984. The pathological and entomological framework of plant breeding. pp. 177-208 In: J.P. Gustafson (ed.). Gene manipulation in plant improvement. 16th Stadler Genetics Symposium, Plenum, New York.

    Google Scholar 

  • Jameson, D.A. 1963. Responses of individual plants to harvesting. Bot. Rev. 29:532-594.

    CAS  Google Scholar 

  • Jenkins, J.N. 1994. Host plant resistance in cotton pp. 359-372 In: G.C. Constable and N.W. Forrester (eds.). Challenging the Future: Proceedings of the World Cotton Res Conf 1, Brisbane Australia, CSIRO, Melbourne.

    Google Scholar 

  • Jing, S.W. and P.D. Coley. 1990. Dioecy and herbivory: the effect of growth rate on plant defense in Acer negundo. Oikos 58:369-377.

    Google Scholar 

  • Johnson, K.B. 1987. Defoliation, disease and growth: A reply. Phytopathology 77:1495-1497.

    Google Scholar 

  • Jones, C.G. and J.S. Coleman. 1991. Plant stress and insect herbivory: toward an integrated perspective. pp. 249-280. In: H.A. Mooney, W.E. Winner, E.J. Pell, and E. Chu (eds.). Response of Plants to Multiple Stresses. Academic Press, New York.

    Google Scholar 

  • Joyce, R.J.V. 1958. Effect on the cotton plant in the Sudan Gezira of certain leaf feeding pests. Nature 182:1463-1464.

    Google Scholar 

  • Karban, R. 1987. Environmental conditions affecting the strength of induced resistance against mites in cotton. Oecologia 73:414-419.

    Google Scholar 

  • Karban, R. 1988. Resistance to beet armyworms (Spodoptera exigua) induced by exposure to spider mites (Tetranychus turkestani) in cotton. Am. Midl. Nat. 119:77-82.

    Google Scholar 

  • Karban, R. and J.R. Carey. 1984. Induced resistance of cotton seedlings to mites. Science 225:53-55.

    PubMed  CAS  Google Scholar 

  • Karban, R. and J.H. Meyers. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. System. 20:331-348.

    Google Scholar 

  • Keep, E. 1969. Accessory buds in the genus Rubus with particular reference to R. idaeus L. Ann. Bot. 33:191-204.

    Google Scholar 

  • Kennedy, G.G. and M.E. Whalon. 1995. Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation. J. Econ. Entomol. 88:454-460.

    Google Scholar 

  • Körner, C.H. 1991. Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Functional Ecology 5:162-173.

    Google Scholar 

  • Lane, H.C. and M.F. Schuster. 1981. Condensed tannins of cotton leaves. Phytochemistry 20:425-427.

    CAS  Google Scholar 

  • Leclant, F. and J.P. Deguine. 1994. Aphids (Hemiptera: Aphididae). pp. 285-323 In: G.A. Matthews and J.P. Tunstall (eds.). Insects Pests of Cotton. CAB International, Wallingford.

    Google Scholar 

  • Leggett, J.E. 1992. Comparison of arthropods sampled from cultivars of upland and Pima cotton with drip and furrow irrigation. Southwest. Entomol. 18:37-43.

    Google Scholar 

  • Luttrel, R.G. 1994. Cotton pest management. Part 2. A U.S. perspective. Ann. Rev. Entomol. 39:527-542.

    Google Scholar 

  • Marquis, R.J. 1988. Intra-crown variation in leaf herbivory and seed production in striped maple, Acer pennsylvanicum L. (Aceracea). Oecologia 77:51-55.

    Google Scholar 

  • Marquis, R.J. and H.M. Alexander. 1992. Evolution of resistance in plant-herbivore and plant-pathogen interactions. Trends Ecol. Evol. 7:126-129.

    PubMed  CAS  Google Scholar 

  • Marquis R.J. and C. Whelan. 1996. Plant morphology and recruitment of the third thropic level: subtle and little-recognized defences? Oikos 75:330-333.

    Google Scholar 

  • Maschinski, J. and T.G. Whitham. 1989. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am. Nat. 134:1-19.

    Google Scholar 

  • Mathews, J.N.A. 1994. The Benefits of overcompensation and herbivory - the difference between coping with herbivores and liking them. Am. Nat. 144:528-533.

    Google Scholar 

  • Matthews, G.A. and J.P. Tunstall. 1994. Insect pests of cotton. C.A.B. International, University Press, Cambridge, 539 pp.

    Google Scholar 

  • McGarr, R.L. 1942. Relation of fertilisers to the developement of the cotton aphid. J. Econ. Entomol. 35:482-483.

    CAS  Google Scholar 

  • McIntyre, G.I. 1997. The role of nitrate in the osmotic and nutritional control of plant development. Australian J Plant Physiol. 24: 103-118.

    CAS  Google Scholar 

  • McNaughton, S.J. 1983a. Physiological and ecological implications of herbivory. pp. 657-677 In: O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Zeigler (eds.). Physiological Plant Ecology Responses to the Chemical and Biological Environment. Springer-Verlag, New York.

    Google Scholar 

  • McNaughton, S.J. 1983b. Compensatory plant growth as a response to herbivory. Oikos 40:329-336.

    Google Scholar 

  • McNaughton, S.J. 1986. On plants and herbivores. Am Nat 128:765-770.

    Google Scholar 

  • Meyer, G.A. 1993. A comparisson of the impacts of leafand sap-feeding insects on growth and allocation of goldenrod. Ecology 74:1101-1116.

    Google Scholar 

  • Meyer, G.A. and T.H. Whitlow. 1992. Effects of leaf and sap feeding insects on photosyntehtic rate of goldenrod. Oecologia 92:480-489.

    Google Scholar 

  • Mistric, J.R. 1968. Effects of Nitrogen fertilization on cotton under boll weevil attack in North Carolina. J. Econ. Entomol. 61:282-283.

    Google Scholar 

  • Morrison, K.D. and E.G. Reekie. 1995. Pattern of defoliation and its effects on photosynthetic capacity in Oenothera biennis. J. Ecol. 83:759-767.

    Google Scholar 

  • Ogborn, J.E.A. and J.H. Proctor. 1962. Bollworm attack and the water status of the cotton crop. Emp. Cott. Grow. Rev. 39:131-135.

    Google Scholar 

  • Ohnmeiss, T.E. and I.T. Baldwin. 1994.The allometry of nitrogen allocation to growth and inducible defense under nitrogen-limited growth. Ecology 75: 995-1002.

    Google Scholar 

  • Owen, D.F. 1980. How plants may benefit from the animals that eat them? Oikos 35:230-235.

    Google Scholar 

  • Owen, D.F. and R.G. Wiegert. 1976. Do consumers maximize plant fitness? Oikos 27:488-492.

    Google Scholar 

  • Owen, D.F. and R.G. Wiegert. 1981. Mutualism between grasses and grazers: an evolutionary hypothesis. Oikos 36:376-378.

    Google Scholar 

  • Paige, K.N. and T.G. Whitham. 1987. Overcompensation in response to mammalian hervibory: the advantage of being eaten. Am Nat 129:407-416.

    Google Scholar 

  • Painter, R.H. 1951. Insect resistance in crop plants. The MacMillan Company, New York.

    Google Scholar 

  • Paris, Q. 1994. Von Liebig’s law of the minimum and low-input technologies. Plant production on the threshold of a New Century, Proc. Int. Conf. on the Ocassion of the 75th Anniversary of the Wageningen Agricultural University, Wageningen, The Netherlands, 28 June-1 July 1993. Kluwer Academic Publishers, Dordrecht pp. 169-177.

    Google Scholar 

  • Passioura, J.B. 1973. Sense and nonsense in crop simulation . J. Aust. Inst. Agric. Sci. 39: 181-183.

    Google Scholar 

  • Passioura, J.B. 1977. Grain yield, harvest index and water use of wheat. J. Aust. Inst. Agric. Sci. 43:117-120.

    Google Scholar 

  • Passioura, J.B. 1996. Simulation models: science, snake oil, education, or engineering? Agronomy J. 88:690- 694.

    Google Scholar 

  • Pearson, E.Q. 1958. The insect pests of cotton in Tropical Africa, CAB, London, 455pp.

    Google Scholar 

  • Pollard, D.G. 1973. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bull. ent. Res. 62:631-714.

    Google Scholar 

  • Prokof’ev, A.A. and D.I. Igamberdieva. 1971.Assimilate content in fugacious and retained fruiting organs of cotton. Soviet Plant Physiol.18:850-854.

    Google Scholar 

  • Prokof’ev A.A. and S. Rasulov. 1975. Optimal number of fruit elements in cotton. Soviet Plant Physiol.22:624-628.

    Google Scholar 

  • Pyke, B.A. and E.H. Brown. 1996. The cotton pest and beneficial guide. Cotton Res. Dev. Corp. and Coop. Res. Centre Trop. Pest Manag., Woolloongaba, 51 pp.

    Google Scholar 

  • Quisenberry, J.E. and D.R. Rummel. 1979. Natural resistance to thrips injury in cotton as measured by differential leaf area reduction. Crop Sci. 19:879-881.

    Google Scholar 

  • Rabin, L.B. and R.S. Pacovsky, 1985. Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J. Econ. Entomol. 78:1358-1363.

    Google Scholar 

  • Ramalho, F.S. 1994. Cotton pest management. Part 4. A Brazilian perspective.Ann. Rev. Entomol. 39:563- 578.

    Google Scholar 

  • Raybould, A.F. and A.J. Gray. 1994. Will hybrids of genetically modified crops invade natural communities? Trends Ecol. Evol. 9: 85-89.

    PubMed  CAS  Google Scholar 

  • Renou, A. and J. Aspirot. 1984 . Reflections on the use of pyrethroids for cotton protection in Chad. Cot. Fib. Trop. 39:109-116.

    Google Scholar 

  • Room, P.M. 1979a. Parasites and predatores of Heliothis spp. (Lepidoptera: Noctuidae) in cotton in the Namoi Valley, New South Wales. J. Aust. Ent. Soc. 18:223-228.

    Google Scholar 

  • Room, P.M. 1979b. A prototype “On-line” system for management of cotton pests in the Namoi Valley, New South Wales. Prot. Ecol. 1:245-264.

    Google Scholar 

  • Rosenthal, J.P. and P.M. Kotanen. 1994. Terrestrial plant tolerance to herbivory. Trends Ecol. Evol. 9:145-148.

    PubMed  CAS  Google Scholar 

  • Rummel, D.R. and J.E. Quisenberry. 1979. Influence of thrips injury on leaf development and yield of various cotton genotypes. J. Econ. Entomol. 72:706-709.

    CAS  Google Scholar 

  • Sadras, V.O. 1995. Compensatory growth in cotton after loss of reproductive organs. Field Crops Res. 40:1-18.

    Google Scholar 

  • Sadras, V.O. 1996a. Cotton compensatory growth after loss of reproductive organs as affected by availability of resources and duration of recovery period. Oecologia 106:432-439.

    Google Scholar 

  • Sadras, V.O. 1996b. Cotton responses to simulated insect damage: Radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs. Field Crops Res. 48:199-208.

    Google Scholar 

  • Sadras, V.O. 1996c. Population-level compensation after loss of vegetative buds: Interactions among damaged and undamaged neighbours. Oecologia 106:417-423.

    Google Scholar 

  • Sadras, V.O. 1997a. Effects of simulated insect damage and weed interference on cotton growth and reproduction. Annals of Applied Biology. 130:271-281

    Google Scholar 

  • Sadras, V.O. 1997b. Interference among cotton neighbours after differential reproductive damage. Oecologia 109:427-432.

    Google Scholar 

  • Sadras, V.O. 1998. Herbivory tolerance of cotton expressing insecticidal proteins from Bacillus thuringiensis: responses to damage caused by Helicoverpa spp. and to manual bud removal. Field Crops Res. 56:287-299.

    Google Scholar 

  • Sadras, V.O. and D.J. Connor. 1991. Physiological basis of the response of harvest index to the fraction of water transpired after anthesis: a simple model to estimate harvest index for determinate species. Field Crops Res 26:227-239.

    Google Scholar 

  • Sadras, V.O. and G.P. Fitt. 1997b. Resistance to insect herbivory of cotton lines: Quantification of recovery capacity after damage. Field Crops Research 52:129-136.

    Google Scholar 

  • Sadras, V.O. and N. Trápani. 1997 Leaf expansion and phenologic development: key determinants of sunflower plasticity, growth and yield. pp. 205-233 In: C. Hamel and D.L. Smith (eds.). Physiological Control of Growth and Yield in Field Crops. Springer-Verlag, Berlin.

    Google Scholar 

  • Sadras, V. O. and L.J. Wilson. 1996. Effects of timing and intensity of spider mite infestation on the oil yield of cotton crops. Aust. J. Exp. Agric. 36:577-580.

    Google Scholar 

  • Sadras, V.O. and L.J. Wilson. 1997a. Growth analysis of spider mite infested cotton crops. I. Light interception and light-use efficiency. Crop Sci. 37:481-491.

    Google Scholar 

  • Sadras, V. O. and L.J. Wilson. 1997b. Growth analysis of spider mite infested cotton crops. II. Partitioning of dry matter. Crop Sci. 37:492-497.

    Google Scholar 

  • Sadras, V.O. and L.J. Wilson. 1997c. Nitrogen accumulation and partitioning in shoots of cotton plants infested with two-spotted spider mites. Austr. J. Agric. Res. 48:525-533.

    Google Scholar 

  • Sadras V.O. and L.J. Wilson. 1998. Recovery of cotton crops after early season damage by thrips (Thysanoptera). Crop Sci. 38:399-409.

    Google Scholar 

  • Sagers, C.L. 1992. Manipulation of host plant quality: herbivores keep leaves in the dark. Funct. Ecol 6:741-743.

    Google Scholar 

  • Simpson, M.E. and L.R. Batra. 1983. Ecological relations in respect to a boll rot of cotton caused by Aspergillus flavus. pp. 24-32 In: H. Kurata and Y. Ueno (eds.). Toxigenic Fungi-Their Toxins and Health Hazard. Elsevier, Tokyo.

    Google Scholar 

  • Smith, L.A. 1992. Response of cotton to deep tillage on Tunica clay. pp. 505-506. In: Proc. Beltwide Cotton Conf., National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Sugonyaev, E.S. 1994. Cotton pest management. Part 5. A Commonwealth of Independent States perspective. Ann. Rev. Entomol. 39:579-592.

    Google Scholar 

  • Summy, K.R. and E.G. King. 1992. Cultural control of cotton insect pests in the United States. Crop Protection 11:307-319.

    Google Scholar 

  • Tabashnik, B.E. 1994a. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79.

    Google Scholar 

  • Tabashnik, B.E. 1994b. Delaying insect adaptation to transgenic crops: seed mixtures and refugia reconsidered. Proc. Royal Soc. London, Series B 255:7-12.

    Google Scholar 

  • Thomas, H. 1994. Resource rejection by higher plants. pp. 375-385. In: J.L. Monteith, R.K. Scott, and M.H. Unsworth (eds.). Resource Capature by Crops. Proc 52nd Easter School, Univ of Nottingham, School of Agriculture, Nottingham Univ Press, Nottingham.

    Google Scholar 

  • Thomson, N.J. 1987. Host plant resistance in cotton. J. Aust. Inst. Agric. Sci. 53: 262-270.

    Google Scholar 

  • Thomson, N.J. 1994. Commercial utilisation of the okra leaf mutant of cotton - the Australian experience. pp. 393-401 In: G.C. Constable and N.W. Forrester (eds.). Challenging the Future: Proceedings of the World Cotton Res Conf 1, Brisbane Australia, Feb 14-17 1994, CSIRO, Melbourne.

    Google Scholar 

  • Thomson, N.J. and J.A. Lee. 1980. Insect resistance in cotton: A review and prospectus for Australia. J. Aust. Inst. Agric. Sci. 46: 75-86.

    Google Scholar 

  • Tilman, D. 1990. Constraints and trade-offs: toward a predictive theory of competition and succession. Oikos 58: 3-15.

    Google Scholar 

  • Töpperwein, H. 1993. Relationships in the apical region of angiosperms. Angew. Bot. 67:22-30.

    Google Scholar 

  • Trewavas, A. 1981. How do plant growth substances work? Plant Cell Environ. 4:203-228.

    CAS  Google Scholar 

  • Trewavas, A.J. 1985. A pivotal role for nitrate and leaf growth in plant development. pp. 77-91 In: N.R. Backer, W.J. Davies, and C.K. Ong (eds.). Control of Leaf Growth. Cambridge Univ Press, Cambridge.

    Google Scholar 

  • Trewavas, A.J. 1986. Understanding the control of plant development and the role of growth substances. Aust. J. Plant Physiol. 13:447-457.

    CAS  Google Scholar 

  • Tuomi, J, 1992. Toward integration of plant defense theories. Trends Ecol. Evol. 7:365-367.

    PubMed  CAS  Google Scholar 

  • Turlings, T.C.J. and J.H. Tumlinson. 1992. Systemic release of chemical signals by herbivore-injured corn, Proc. Natl. Acad. Sci. USA 89: 8399-8402.

    PubMed  CAS  Google Scholar 

  • Vail, S.G. 1992. Selection for overcompensatory plant responses to herbivory: a mechanism for the evolution of plant-herbivore mutualism. Am. Nat. 139:1-8.

    Google Scholar 

  • Vail, S.G. 1994. Overcompensation, plant-herbivore mutualism, and mutalistic coevolution - A reply to Mathews. Am. Nat. 144:534-536.

    Google Scholar 

  • Vaissayre, M. 1994. Ecological attributes of major cotton pests: implications for management. In: Challenging the future: Proceedings of the World Cotton Res Conf 1, Brisbane Australia, Feb 14-17 1994, G.C. Constable and N.W. Forrester (eds.), pp. 499-510. CSIRO, Melbourne.

    Google Scholar 

  • van der Meijden, E. 1990. Herbivory as a trigger for growth. Funct. Ecol. 4: 597-598.

    Google Scholar 

  • van der Meijden, E., M. Wijn, and H.J. Verkaar. 1988. Defense and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51: 355-363.

    Google Scholar 

  • van Emden, H.F. and P. Hadley. 1994. The application of the concepts of resource capture to the effect of pest incidence on crops. pp. 149-165 In: J.L. Monteith, R.K. Scott, and M.H. Unsworth (eds.). Resource Capture by Crops. Proc 52nd Easter School, Univ of Nottingham, School of Agriculture, Nottingham Univ. Press, Nottingham.

    Google Scholar 

  • Verkaar, H.J. 1988. Are defoliators beneficial for their host plants in terrestrial ecosystems - a review? Acta Bot. Neerl. 37:137-152.

    CAS  Google Scholar 

  • Waring, G.L. and N.S. Cobb. 1992. The impact of plant stress on herbivore population dynamics. Insect- Plant Interactions 4:167-226.

    Google Scholar 

  • Watson, D.J. 1947. Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. N.S. 11:41-76.

    CAS  Google Scholar 

  • Watts, J.G. 1937. Reduction of cotton yield by thrips. J. Econ. Entomol. 30:860-863.

    Google Scholar 

  • Welter, S.C. 1989. Arthropod impact on plant gas exchange. pp. 135-150. In: E.A. Bernays (ed.). Insect-Plant Interactions Vol I. CRC Press Boca Raton, Florida.

    Google Scholar 

  • Went, F.W. 1974. Reflections and speculations. Ann. Rev. Plant. Physiol.25:1-26.

    CAS  Google Scholar 

  • Whalon, M.E. and W.H. McGaughey. 1993. Insect resistance to Bacillus thuringiensis. pp. 215-232 In: L. Kim (ed.). Advanced Engineered Pesticide. Marcell Dekker Inc. New York.

    Google Scholar 

  • White, R.F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410-412.

    PubMed  CAS  Google Scholar 

  • White, T.C.R. 1993. The Inadequate Environment. Springer-Verlag, Berlin, pp. 425.

    Google Scholar 

  • Wilson, A.G.L. 1981. Heliothis damage to cotton and concomitant action levels in the Namoi Valley, New South Wales. Prot. Ecol.3:311-325.

    Google Scholar 

  • Wilson, F.D. 1987. Pink bollworm resistance, lint yield, and earliness of cotton isolines in a resistant genetic background, Crop Sci. 27:957-960.

    Google Scholar 

  • Wilson, F.D. 1991. Twenty years of host plant resistance: progress, problems, prognostications. Proc. Beltwide Cotton Conferences 1:542-544. National Cotton Council of America, Mempis, Tenn.

    Google Scholar 

  • Wilson, L.J. 1993. Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. J. Econ. Entomol. 86: 566-585.

    Google Scholar 

  • Wilson, L.J. 1994. Resistance of okra-leaf cotton genotypes to twospotted spider mites (Acari: Tetranychidae). J. Econ. Entomol. 87: 1726-1735.

    Google Scholar 

  • Wilson, L.J. 1995. Habitats of twospotted spider mites (Acari: Tetranychidae) during winter and spring in a cotton-producing region of Australia. Environ. Entomol. 24:332-340.

    Google Scholar 

  • Yamamura, N. and N. Tsuji. 1995. Optimal strategy of plant antiherbivore defense: implications for appar ency and resource availability theories. Ecological Research 10:19-30.

    Google Scholar 

  • Zangerl, A.R. and F.A. Bazzaz. 1992. Theory and pattern in plant defense allocation. pp. 363-391 In: R.S. Fritz and E.L. Simms (eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics, University of Chicago Press, Chicago.

    Google Scholar 

  • Zeringue, H.J., Jr, 1987. Changes in cotton leaf chemistry induced by volatile elicitors. Pytochemistry 26:1357-1453.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sadras, V.O., Felton, G.W. (2010). Mechanisms of Cotton Resistance to Arthropod Herbivory. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_20

Download citation

Publish with us

Policies and ethics