Skip to main content

Robot Competence Development by Constructive Learning

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 48))

Abstract

This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bousquet, O, Balakrishnan, K., and Honavar, V (1998). Is the hippocampus a Kalman filter? In Pacific Symposium on Biocomputing, pages 655–666, Hawaii.

    Google Scholar 

  2. Hihara, S., Notoya, T., Tanaka, M., Ichinose, S., Ojima, H., Obayashi, S., Fujii, N., and Iriki, A. (2006). Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia, 44(13):2636–2646.

    Article  Google Scholar 

  3. Hihara, S., Obayashi, S., Tanaka, M., and Iriki, A. (2003). Rapid learning of sequential tool use by macaque monkeys. Physiology and Behavior, 78:427–434.

    Article  Google Scholar 

  4. Huys, Quentin JM, Zemel, Richard S, Natarajan, Rama, and Dayan, Peter (2007). Fast population coding. Neural Computation, 19(2):404–441.

    Article  MATH  MathSciNet  Google Scholar 

  5. Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Puetz, B., Yoshioka, T., and Kawato, M. (2000). Human cerebellar activity reflecting an acquired internal model of a novel tool. Nature, 403:192–195.

    Article  Google Scholar 

  6. Johnson-Frey, Scott H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2):71–78.

    Article  Google Scholar 

  7. Lee, M.H., Meng, Q., and Chao, F. (2007). Developmental learning for autonomous robots. Robotics and Autonomous Systems, 55(9):750–759.

    Article  Google Scholar 

  8. Lu, Yingwei, Sundararajan, N., and Saratchandran, P. (1998). Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on neural networks, 9(2):308–318.

    Article  Google Scholar 

  9. Maguire, Eleanor A., Gadian, David G., Johnsrude, Ingrid S., Goodd, Catriona D., Ashburner, John, Frackowiak, Richard S. J., and Frith, Christopher D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. PNAS, 97(8):4398–4403.

    Article  Google Scholar 

  10. Maravita, A. and Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Science, 8(2):79–86.

    Article  Google Scholar 

  11. O’Keefe, J. (1989). Computations the hippocampus might perform. In Nadel, L., Cooper, L.A., Culicover, P., and Harnish, R.M., editors, Neural connections, mental computation. MIT Press, Cambridge, MA.

    Google Scholar 

  12. Piaget, Jean (1952). The Origins of Intelligence in Children. Norton, New York, NY.

    Book  Google Scholar 

  13. Poggio, Tomaso (1990). A theory of how the brain might work. MIT AI. memo No. 1253.

    Google Scholar 

  14. Poggio, Tomaso and Girosi, Federico (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481–1497.

    Article  Google Scholar 

  15. Pouget, A. and Snyder, L.H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience supplement, 3:1192–1198.

    Article  Google Scholar 

  16. Quartz, S.R. and Sejnowski, T.J. (1997). The neural basis of cognitive development: A constructivist manifesto. Brain and Behavioral Sciences, 20:537–596.

    Google Scholar 

  17. Rao, R. and Ballard, D. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9(4):721–763.

    Article  Google Scholar 

  18. Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex. Nature Neuroscience, 2(1):79–87.

    Article  Google Scholar 

  19. Shultz, T.R (2006). Constructive learning in the modeling of psychological development. In Munakata, Y. and Johnson, M.H., editors, Processes of change in brain and cognitive development: Attention and performance XXI, pages 61–86. Oxford: Oxford University Press.

    Google Scholar 

  20. Shultz, T.R., Mysore, S.P., and Quartz, S. R. (2007). Why let networks grow. In Mareschal, D., Sirois, S., Westermann, G., and Johnson, M.H., editors, Neuroconstructivism: Perspectives and prospects, volume 2, chapter 4, pages 65–98. Oxford: Oxford University Press.

    Google Scholar 

  21. Szirtes, Gábor, Póczos, Barnabás, and Lőrincz, András (2005). Neural Kalman filter. Neurocomputing, 65–66:349–355.

    Google Scholar 

  22. Todorov, E. and Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11):1226–1235.

    Article  Google Scholar 

  23. Weng, Juyang, McClelland, James, Pentland, Alex, Sporns, Olaf, Stockman, Ida, Sur, Mriganka, and Thelen, Esther (2001). Autonomous mental development by robots and animals. Science, 291(5504):599–600.

    Article  Google Scholar 

  24. Westermann, G. and Mareschal, D. (2004). From parts to wholes: Mechanisms of development in infant visual object processing. Infancy, 5(2):131–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meng, Q., Lee, M.H., Hinde, C.J. (2010). Robot Competence Development by Constructive Learning. In: Amouzegar, M. (eds) Advances in Machine Learning and Data Analysis. Lecture Notes in Electrical Engineering, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3177-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3177-8_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3176-1

  • Online ISBN: 978-90-481-3177-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics