Skip to main content

Thermodynamic Analysis in Drug–Receptor Binding: The A3 Adenosine Receptor

  • Chapter
  • First Online:
Book cover A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

Receptor binding thermodynamics is a powerful tool to gain deep insight, at the molecular level, of the events which occur during drug–receptor interactions. This paper deals with the study of the A3 adenosine receptors in the general scenario of all receptors studied so far from this point of view. Thermodynamic parameters, standard free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) of the A3 adenosine receptor binding equilibrium are reported, discussed and compared with those observed for membrane receptors thermodynamically investigated. As for available thermodynamic data of all G-protein coupled receptors (GPCRs) and ligand-gated ion channels receptors (LGICRs) are reported and discussed in terms of two important physical phenomena, the thermodynamic discrimination and enthalpy–entropy compensation. Thermodynamic data of A3 adenosine receptors will be compared with those obtained in different cell systems for A1, A2A and A2B receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108(1):238–263

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Bertelli GL, Gilli G (1988) Temperature dependence of the binding of mu, delta and kappa agonists to the opiate receptors in guinea pig brain. Eur J Pharmacol 146(2–3):247–252

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Varani K, Dalpiaz A, Capuzzo A, Fabbri E, IJzerman AP (1994) Full and partial agonistic behavior and thermodynamic binding parameters of adenosine A1 receptor ligands. Eur J Pharmacol 267(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Dalpiaz A, Varani K, Guerra L, Gilli G (1995) Binding thermodynamics of adenosine A2A receptor ligands. Biochem Pharmacol 49(4):461–469

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Dalpiaz A, Varani K, Gessi S, Gilli G (1996a) Binding thermodynamics at A1 and A2A adenosine receptors. Life Sci 59(17):1373–1388

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Dalpiaz A, Gessi S, Gilli G (1996b) Thermodynamics of 5-HT3 receptor binding discriminates agonistic from antagonistic behaviour. Eur J Pharmacol 298(3):329–334

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Varani K, Gessi S, Gilli P, Gilli G (1998) Binding thermodynamics at the human neuronal nicotine receptor. Biochem Pharmacol 55(8):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Dalpiaz A, Varani K, Gilli P, Gilli G (2000) Can thermodynamic measurements of receptor binding yield information on drug affinity and efficacy? Biochem Pharmacol 60(11):1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Borea PA, Varani K, Gessi S, Gilli P, Dalpiaz A (2001) Thermodynamics of adenosine (A1 and A2A) receptor interactions. In: Raffa RB (ed.) Drug receptor thermodynamics: introduction and applications. Wiley, New York, 221–244

    Google Scholar 

  • Borea PA, Varani K, Gessi S, Merighi S, Dalpiaz A, Gilli P, Gilli G (2004) Receptor binding thermodynamics at the neuronal nicotinic receptor. Curr Topics Med Chem 4(3):361–368

    Article  CAS  Google Scholar 

  • Boysen RI, Jong AJ, Hearn MT (2002) Thermodynamic assessment of the stability of thrombin receptor antagonistic peptides in hydrophobic environments. Biophys J 82(5):2279–2292

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic signalling. An overview. Novartis Found Symp 276:26–48

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Bylund DB, Yamamura HI (1990) Methods for receptor binding. In: Yamamura HI, Enna SJ, Kuhar MJ (eds) Methods in neurotransmitter receptor analysis. Raven Press, New York, 1–36

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationships between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Dalpiaz A, Gessi S, Borea PA, Gilli G (1995) Binding thermodynamics of serotonin to rat-brain 5-HT1A, 5HT2A and 5-HT3 receptors. Life Sci 57(12):L141–146

    Article  Google Scholar 

  • Dalpiaz A, Borea PA, Gessi S, Gilli G (1996) Binding thermodynamics of 5-HT1A receptor ligands. Eur J Pharmacol 312(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Duarte EP, Oliveira CR, Carvalho AP (1988) Thermodynamic analysis of antagonist and agonist interaction with dopamine receptors. Eur J Pharmacol 147(2):227–239

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Morelli A, Ferrari D, Leung E, Baraldi PG, Spalluto G, Borea PA (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134(1):116–126

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61(2):415–424

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65(3):711–719

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Cattabriga E, Benini A, Mirandola P, Leung E, Mac Lennan S, Feo C, Baraldi S, Borea PA (2007) Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines:focus on the A3 adenosine subtype. J Cell Physiol 211(3):826–836

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008a) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Fogli E, Sacchetto V, Varani K, Merighi S, Leung E, Lennan SM, Borea PA (2008b) Thermodynamics of A2B adenosine receptor binding discriminates agonistic from antagonistic behaviour. Biochem Pharmacol 75(2):562–569

    Article  CAS  PubMed  Google Scholar 

  • Gilli G, Borea PA (1991) Structural chemistry and drug design. In: Jeffrey GA, Pinella JF (eds) The application of charge-density research to chemistry and drug design. Plenum publishing Co, New York

    Google Scholar 

  • Gilli P, Ferretti V, Gilli G, Borea PA (1994) Enthalpy-entropy compensation in drug–receptor binding. J Phys Chem 98(5):1515–1518

    Article  CAS  Google Scholar 

  • Gilli P, Gilli G, Borea PA, Varani K, Scatturin A, Dalpiaz A (2005) Binding thermodynamics as a tool to investigate the mechanisms of drug–receptor interactions: thermodynamics of cytoplasmic steroid/nuclear receptors in comparison with membrane receptors. J Med Chem 48(6):2026–2035

    Article  CAS  PubMed  Google Scholar 

  • Gomez AR, Garcia Calvo M, Vasquez J, Marvizon CG, Valdiviero T, Major F (1989) Thermodynamics of agonist and antagonist interaction with the strychnine-sensitive glycine receptor. J Neurochem 52(6):1775–1780

    Article  Google Scholar 

  • Grunwald E, Steel C (1995) Solvent reorganization and thermodynamic enthalpy–entropy compensation. J Am Chem Soc 117(21):5687–5692

    Article  CAS  Google Scholar 

  • Harper EA, Black JW (2007) Histamine H3-receptor agonists and imidazole-based H3-receptor antagonists can be thermodynamically discriminated. Br J Pharmacol 151(4):504–517

    Article  CAS  PubMed  Google Scholar 

  • Harper EA, Roberts SP, Kalindjian SB (2007a) Thermodynamic analysis of ligands at cholecystokinin CCK2 receptors in rat cerebral cortex. Br J Pharmacol 151(8):1352–1367

    Article  CAS  PubMed  Google Scholar 

  • Harper EA, Shankley NP, Black JW (2007b) Correlation of apparent affinity values from H3-receptor binding assays with apparent affinity (pKapp) and intrinsic activity (alpha) from functional bioassays. Br J Pharmacol 151(1):128–143

    Article  CAS  PubMed  Google Scholar 

  • Harper EA, Mitchell EA, Griffin EP, Kalindjian SB (2008) Thermodynamic analysis does not allow discrimination of agonists and antagonists at human CCK2S-receptors. Eur J Pharmacol 581(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Holdgate GA, Ward WHJ (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov Today 10(22):1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Ladbury JE (2004) Application of isothermal titration calorimetry in the biological sciences: things are heating up!. Biotechniques 37(6):665–687

    Google Scholar 

  • Leung DH, Bergman RG, Raymond KN (2008) Enthalpy-entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water. J Am Chem Soc 130(9):2798–2805

    Article  CAS  PubMed  Google Scholar 

  • Li JG, Raffa RB, Cheung P, Tzeng TB, Liu-Chen LY (1998) Apparent thermodynamic parameters of ligand binding to the cloned rat mu-opioid receptor. Eur J Pharmacol 354(2–3):227–237

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen A, Guerra L, Campi F, Lang H, Schwabe U, Borea PA (2000) Thermodynamically distinct high and low affinity states of the A1 adenosine receptor induced by G protein coupling and guanine nucleotide ligation states of G proteins. Br J Pharmacol 130(3):595–604

    Article  CAS  PubMed  Google Scholar 

  • Martinelli A, Tuccinardi T (2008) Molecular modeling of adenosine receptors: new results and trends. Med Res Rev 28(2):247–277

    Article  CAS  PubMed  Google Scholar 

  • Maksai G (1994) Thermodynamics of gamma-aminobutyric acid type A receptor binding differentiate agonists from antagonists. Mol Pharmacol 46(2):386–390

    Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134(6):1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA (2002) Binding thermodynamics at the human A3 adenosine receptor. Biochem Pharmacol 63(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for the characterization of ligand binding systems. Anal Biochem 107(1):220–239

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25(4):186–192

    Article  CAS  PubMed  Google Scholar 

  • Raffa RB, Porreca F (1989) Thermodynamic analysis of the drug–receptor interaction. Life Sci 44(4):245–258

    Article  CAS  PubMed  Google Scholar 

  • Raffa RB (2001a). Introduction: on the relevance of thermodynamics to pharmacology. In: Raffa RB (ed) Drug receptor thermodynamics: introduction and applications. Wiley, New York, 3–12.

    Google Scholar 

  • Raffa RB (2001b). Drug receptor thermodynamics: Introduction and applications. Wiley, Newyork, 221–415.

    Google Scholar 

  • Sturtevant JM (1977) Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A 74(6):2236

    Article  CAS  PubMed  Google Scholar 

  • Testa B, Jenner P, Kilpatrick GJ, Eltayar N, Van de Waterbeemb H, Marsden CD (1987) Do thermodynamic studies provide information about both binding to and the activation of dopaminergic and other receptors? Biochem Pharmacol 36(23):4041–4046

    Google Scholar 

  • Tomlinson E (1983) Enthalpy–entropy compensation analysis of pharmaceutical, biochemical and biological systems. Int J Pharm 13:115–144

    Article  CAS  Google Scholar 

  • Varani K, Calo G, Rizzi A, Merighi S, Toth G, Guerrini R, Salvadori S, Borea PA, Regoli D (1998) Nociceptin receptor binding in mouse forebrain membranes: thermodynamic characteristics and structure activity relationships. Br J Pharmacol 125(7):1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA (2000) [3H]-MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57(5):968–975

    CAS  PubMed  Google Scholar 

  • Varani K, Caramori G, Vincenzi F, Adcock I, Casolari P, Leung E, Maclennan S, Gessi S, Morello S, Barnes PJ, Ito K, Chung KF, Cavallesco G, Azzena G, Papi A, Borea PA (2006) Alteration of adenosine receptors in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(4):398–406

    Article  CAS  PubMed  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F, Gessi S, Merighi S, Pellati A, Ongaro A, Caruso A, Cadossi R, Borea PA (2008a) Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16(3):292–304

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Surprenant A, Vincenzi F, Tosi A, Gessi S, Merighi S, Borea PA (2008b) Binding thermodynamic characterization of human P2X1 and P2X3 purinergic receptors. Biochem Pharmacol 75(5):1198–1208

    Article  CAS  PubMed  Google Scholar 

  • Varani K, De Mattei M, Vincenzi F, Tosi A, Gessi S, Merighi S, Pellati A, Masieri F, Ongaro A, Borea PA (2008c) Pharmacological characterization of P2X(1) and P2X(3) purinergic receptors in bovine chondrocytes. Osteoarthritis Cartilage 16(11):1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Weiland GA, Minneman KP, Molinoff PB (1979) Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor. Nature 281(5727):114–117

    Article  CAS  PubMed  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996) The cubic ternary complex receptor-occupancy model I Model description. J Theor Biol 178(2):151–167

    Article  CAS  Google Scholar 

  • Whitesides GM, Krishnamurthy VM (2006) Designing ligands to bind proteins. Q Rev Biophys 38(4):385–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Borea, P.A., Gessi, S., Merighi, S., Varani, K. (2010). Thermodynamic Analysis in Drug–Receptor Binding: The A3 Adenosine Receptor. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_2

Download citation

Publish with us

Policies and ethics