Skip to main content

Abstract

A growing body of evidence has accumulated to indicate an important cyto-protective role of the adenosine A3 receptor. This protective function, originally discovered in ameliorating ischemia–reperfusion injury in the heart, is now also extended to the skeletal muscle. Understanding the pharmacology of various adenosine receptor subtypes allowed their selective activation and delineated the protective role of adenosine A3 receptors as well as that of other receptor subtypes. The use of phospholipase Cβ2/β3 knockout mice showed that the A3 receptor-induced anti-ischemic protection in the skeletal muscle is mediated via this phospholipase isoform. The protective effect of adenosine A1 and A2A receptors, however, does not involve this phospholipase C. Other potential effectors of the adenosine A3 receptor include KATP channels, reactive oxygen species, RISK-reperfusion injury salvage kinase, mPTP-mitochondrial permeability transition pore, matrix metalloproteinases and associated tissue inhibitor of metallproteinases, and metallothionein. Direct muscle protection mediated via muscle cell-surface A3 receptors as well as anti-inflammatory effects exerted at the level of immune cell A3 receptors may contribute to the potent cytoprotective effect of the adenosine A3 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auchamapach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R (1997) Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res 80:800–809

    Google Scholar 

  • Auchampach JA, Ge Z-D, Wan TC, Moore J, Gross GJ (2003) A3 adenosine receptor agonist IB-MECA reduces myocardial ischemia–reperfusion injury in dogs. Am J Physiol Heart Circ Physiol 285:607–613

    Google Scholar 

  • Beyersdorf F, Unger A, Wildhirt A, Kretzer U, Deutschlander N, Kruger S, Matheis G, Hanselmann A, Zimmer G, Satter P (1991) Studies of reperfusion injury in skeletal muscle: preserved cellular viability after extended periods of warm ischemia. J. Cardiovasc Surg 32:664–76

    CAS  Google Scholar 

  • Black RG, Guo Y, Ge Z-D, Murphree SS, Prabhu SD, Jones WK, Bolli R (2002) Auchampach JA Gene-dosage dependent effects of cardiac-specific overexpression of the A3 adenosine receptor. Circ Res 91:165–172

    Article  CAS  PubMed  Google Scholar 

  • Blaisdell FW (2002) The pathophysiology of skeletal muscle ischemia and perfusion syndrome: a review. Cardiovasc Surg 10:620–630

    Google Scholar 

  • Bortolotto SK, Morrison WA, Han X-L, Messina A (2004) Mast cells play a pivotal role in ischemia reperfusion injury to skeletal muscle. Lab Invest 84(9):1–9

    Google Scholar 

  • Bushell AJ, Klenerman L, Davies H, Grierson I, McArdle A, Jackson MJ (2002a) Ischemic preconditioning of skeletal muscle. 2. Investigation of the potential mechanisms involved. J Bone Joint Surg 84-B:1189–1193

    Google Scholar 

  • Bushell AJ, Klenerman L, Taylor S, Davies H, Grierson I, Helliwell TR, Jackson MJ (2002b) Ischemic preconditioning of skeletal muscle. 1. Protection against the structural changes induced by ischemic/reperfusion injury. J Bone Joint Surg 84-B:1184–1188

    Google Scholar 

  • Carrol CMA, Carrole SM, Overgoor MLE, Tobin G, Barker JH (1997) Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival. Plast Reconstr Surg 100:58–65

    Article  Google Scholar 

  • Cross HR, Murphy E, Black RG, Auchampach JA, Steenbergen C (2002) Overexpression of A3 adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. Am J Physiol Heart Circ Physiol 283:1562–1568

    Google Scholar 

  • Ecker P, Schnackerz K (1991) Ischemic tolerance of human skeletal muscle. Ann Plast Surg 26:77–84

    Article  Google Scholar 

  • Feng W, Benz FW, Cai J, Pierce WM, Kang YJ (2006) Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J Biol Chem 281:681–7

    Article  CAS  PubMed  Google Scholar 

  • Formigli L, Lombardo LD, Adembri C, Brunelleschi S, Ferrari E, Novelli GP (1992) Neutrophils and mediators of human skeletal muscle ischemia–reperfusion syndrome. Hum Pathol 23:627–634

    Article  CAS  PubMed  Google Scholar 

  • Gallin JI, Snyderman R (1999) In: Gallin JL, Snyderman R, Fearon DT, Haynes BF, Nathan C (eds) Inflammation: basic principles and clinical correlations. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1047–1061

    Google Scholar 

  • Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45:4471–4484

    Google Scholar 

  • Ge Z-D, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA (2006) Cl-IBMECA reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 319:1200–1210

    Google Scholar 

  • Ghoshal K, Wang Y, Sheridan JF, Jacob ST (1998) Metallothionein induction in response to restraint stress. Transcriptional control, adaptation to stress, and role of glucocorticoid. J Biol Chem 273:27904–27910

    Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NADPH oxidase. Role in cardiovascular biology and disease. Circ Res 86:494–501

    Google Scholar 

  • Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogen synthase kinase b inhibition during reperfusion in intact rat hearts. Circ Res 94:960–966

    Article  CAS  PubMed  Google Scholar 

  • Gross GJ, Auchampach JA (2007) Reperfusion injury: does it exist? J Mol Cell Cardiol 42:12–18

    Google Scholar 

  • Hnia K, Hugon G, Rivier F, Masmoudi A, Mercier J, Mornet D (2007) Modulation of p38 mitogen-activated protein kinase cascade and metalloproteinase activity in diaphragm muscle in response to free radical scavenger administration in dystrophin deficient Mdx mice. Am J Pathol 170:633–43

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Barba I, Solfer-Soler J (2006) Ischemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion. Cardiovasc Res 70:364–373

    Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Google Scholar 

  • Jagoe RT, Lecker SH, Gomes M, Goldberg AL (2002) Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J 16:1697–712

    Article  CAS  PubMed  Google Scholar 

  • Jordan JE, Thourani VH, Auchampach JA, Robinson JA, Wang N-P, Vinten-Johansen J (1999) A3 adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. Am J Physiol Heart Circ Physiol 277:H1895–H1905

    Google Scholar 

  • Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–98

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Nishino K, Itokawa Y (1994) Hydroxyl radical generation in skeletal muscle atrophied by immobilization. FEBS Lett 349:169–72

    Article  CAS  PubMed  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Schroeder CA, Shah PM, Babu SC, Thompson CI, Belloni FL (1996) Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury. J Surg Res 63:29–34

    Google Scholar 

  • Liang BT, Jacobson KA (1998) A physiological role of adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 95:6995–6999

    Article  CAS  PubMed  Google Scholar 

  • Maddock HL, Mocanu MM, Yellon DM (2002) Adenosine A3 receptor activation protects the myocardium from reperfusion/reoxygenation injury. Am J Physiol Heart Circ Physiol. 283:H1307–H1313

    CAS  PubMed  Google Scholar 

  • Mansoor O, Beaufrere B, Boirie Y, Ralliere C, Taillandier D, Aurousseau E, Schoeffler P, Arnal M, Attaix D (1996) Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci U S A 93:2714–8

    Article  CAS  PubMed  Google Scholar 

  • Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008) Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett18:2813–2819

    Google Scholar 

  • Miles AT, Hawksworth GM, Beattle JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70

    Article  CAS  PubMed  Google Scholar 

  • Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413

    Google Scholar 

  • Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, Zair M, Rassuli A, Forrest CR, Grover GJ, Oang CY (2005) Mitochondrial KATP channels in hindlimb remote ischemic preconditioning of skeletal muscle infarction. Am J Physiol Heart Circ Physiol 288:H559–H567

    Google Scholar 

  • Nath R, Kumar D, Li T, Singal PK (2000) Metallothioneins, oxidative stress and the cardiovascular system. Toxicology 155:17–26

    Article  CAS  PubMed  Google Scholar 

  • Ochaion A, Bar-Yehuda S, Cohen S, Amital H, Jacobson KA, Joshi BV, Gao, ZG, Barer F, Zabutti A, Del ValleL, Perez-Liz G, Fishman P (2008) The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-кB signaling pathways in synoviocytes from rheumatoid arthritis patients and in adjuvant induced arthritis. Biochem Pharmacol76:482–494

    Google Scholar 

  • Pang CY, Yang RZ, Zhong A, Xu N, Boyd B, Forrest CR (1995) Acute ischemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res 29:782–788

    CAS  PubMed  Google Scholar 

  • Pang CY, Neligan P, Zhong A, He W, Xu H, Forrest CR (1997) Effector mechanism of adenosine in acute ischemic preconditioning of skeletal muscle against infarction. Am J Physiol Reg Integr Comp Physiol 273:R887–R895

    CAS  Google Scholar 

  • Penkowa M, Keller P, Keller C, Hidalgo J, Giralt M, Pedersen BK (2005) Exercise induced metallothionein expression in human skeletal muscle fibres. Exp Physiol 90:477–86

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890

    Google Scholar 

  • Sicard RE (2002) Differential inflammatory and immunological responses in tissue regeneration and repair. Ann N Y Acad Sci 961:368–71

    Article  PubMed  Google Scholar 

  • Southard JH, Belzer FO (1995) Organ preservation. Annu Rev Med 46:235–247

    Article  CAS  PubMed  Google Scholar 

  • Stracher A (1999) Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci 884:52–9

    Article  CAS  PubMed  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  CAS  PubMed  Google Scholar 

  • Tchilibon S, Joshi BV, Kim SK, Duong HT, Gao ZG, Jacobson KA (2005) (N)-Methanocarba 2, N6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J Med Chem 48:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG (1995) Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 27:1022–32

    Article  CAS  PubMed  Google Scholar 

  • Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J Clin Invest 105:361–367

    Google Scholar 

  • Tsuchida T, Kato T, Yamaga M, Ikebe K, Oniki Y, Irie H, Takagi K (2003) The effect of perfusion with UW solution on the skeletal muscle and vascular endothelial exocrine function in rat hindlimbs. J Surg Res 110:266–271

    Google Scholar 

  • Urso ML, Scrimgeour AG, Chen YW, Tthompson PD, Clarkson PM (2006) Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol 101:1136–48

    Article  CAS  PubMed  Google Scholar 

  • Wan TC, Ge Z-D, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok W-M, Auchampach JA (2008) The A3 adenosine receptor agonist CP-532,903 protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324:234–243

    Google Scholar 

  • Warren GL, Summan M, Gao X, Chapman R, Hulderman T, Simeonova PP (2007) Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 582:825–41

    Article  CAS  PubMed  Google Scholar 

  • Zheng J-G, Wang R, Zambraski E, Wu D, Jacobson KA, Liang BT (2007) Protectiveroles of adenosine A1, A2A ,and A3 receptors in skeletal muscle ischemia and reperfusioninjury. Am J Physiol Heart Circ Physiol 293:H3685–H3691

    Google Scholar 

Download references

Acknowledgements

Kenneth A Jacobson acknowledges support by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases. BTL acknowledges support by a grant (W81XWH-05-1-0060) from USAMRMC, Department of Defense. We thank Dr. Moshe Chinn for providing the binding data on MRS1523 in Table 13.1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liang, B.T., Urso, M., Zambraski, E., Jacobson, K.A. (2010). Adenosine A3 Receptors in Muscle Protection. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_13

Download citation

Publish with us

Policies and ethics