Skip to main content

Peculiar Morphologies of Subaqueous Landslide Deposits and Their Relationship to Flow Dynamics

  • Chapter
Submarine Mass Movements and Their Consequences

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 28))

Abstract

The morphology of subaqueous landslide deposits is seldom analyzed quantitatively or at least semi-quantitatively with regard to the dynamics of the flow. However, the peculiar morphology of the deposits can reveal information on the mechanics of propagation of the mass movement and on the mechanism of emplacement. Horseshoe-shaped deposits and oriented blocks are two peculiar morphologies of subaqueous landslide which have been identified in this paper. Both morphologies have been described in a qualitative way by considering the shape of the deposit and the geomorphological features of the areas of emplacement. Furthermore, these morphologies have been analyzed in a quantitative way by means of mathematical and numerical approaches. The close relationship between these morphologies and the landslide mechanism of propagation and emplacement has been thus preliminary demonstrated by accounting for the interaction between moving mass and the ambient fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batchelor G K (1967) An Introduction to Fluid Dynamics. Cambridge University Press, New York.

    Google Scholar 

  • Blikra L H, Longva O, Braathen A, Anda E, Dehls K, Stalsberg K (2006) Rock slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans S G, Scarascia Mugnozza G, Strom A, Hermanns R (eds) Massive Rock Slope Failure, NATO Science Series, Kluwer Academic, Springer Netherlands, pp. 475–496.

    Chapter  Google Scholar 

  • Breien H, Pagliardi M, De Blasio F V, Issler D, Elverhøi A (2007) Experimental studies of subaqueous vs. subaerial debris flows — velocity characteristics as a function of the ambient fluid. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine Mass Movement and Their Consequence, Springer Heidelberg, pp. 101–110.

    Chapter  Google Scholar 

  • De Blasio F V, Elverhøi A (2009) Properties of mass-transport deposits as inferred from dynamical modelling of sub-aqueous mass wasting: a short review. In Shipp C, Weimer P, Posamentier H (eds) The Importance of Mass-Transport Deposits in Deepwater Settings. Soc Sediment Geol Spec Pub (In press).

    Google Scholar 

  • De Blasio F V, Elverhøi A, Engvik L E, Issler D, Gauer P, Harbitz C (2006b) Understanding the high mobility of subaqueous debris flows. Nor J Geol 86: 275–284.

    Google Scholar 

  • De Blasio F V, Engvik L, Harbitz C B, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109: C01002, doi:10.1029/2002JC001714.

    Article  Google Scholar 

  • De Blasio F V, Engvik L, Elverhøi A (2006a) Sliding of outrunner blocks from submarine landslides. Geophys Res Lett 33: L06614, doi:10.1029/2005GL025165.

    Article  Google Scholar 

  • De Blasio F V, Elverhøi A, Issler D, Harbitz C B, Bryn P, Lien R (2005) On the dynamics of subaqueous clay rich gravity mass flow — the giant Storegga slide, Norway. Mar Pet Geol 22: 179–186.

    Article  Google Scholar 

  • Gardner J V, Mayer L A, Hughs Clarke J E (2000) Morphology and processes in Lake Tahoe (California-Nevada). Geol Soc Am Bull 112 (5): 736–746.

    Article  Google Scholar 

  • Gee M J R, Masson D G, Watts A B, Allen P A (1999) The Saharan flow: an insight into the mechanics of long runout submarine debris flows. Sedimentol 46: 317–335.

    Article  Google Scholar 

  • Hampton M A, Lee H J, Locat J (1996) Submarine landslides. Rev Geophys 34: 33–59.

    Article  Google Scholar 

  • Harbitz C B, Løvholt F, Pedersen G, Masson D G (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86: 255–264.

    Google Scholar 

  • Ilstad T, De Blasio F V, Elverhoi A, Harbitz C B, Engvik L, Longva O, Marr J G (2004a) On the frontal dynamics and morphology of submarine debris flows. Mar Geol 213: 481–497.

    Article  Google Scholar 

  • Ilstad T, Elverhøi A, Issler D, Marr J (2004b) Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol 213: 415–438.

    Article  Google Scholar 

  • Kuijpers A, Nielsen T, Akhmetzhanov A, De Haas H, Kenyon N H, van Weering T C E. (2001) Late Quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Mar Lett 20: 149–159.

    Article  Google Scholar 

  • Lastras G, De Blasio F V, Canals M, Elverhøi A (2005) Conceptual and numerical modeling of the Big′95 debris flow, western Mediterranean Sea. J Sed Res 75: 784–797.

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63: 301–331.

    Article  Google Scholar 

  • Longva O, Janbu N, Blikra L H, Bøe R (2003) The 1996 Finneidfjord slide; seafloor failure and slide dynamics. In: Locat J, Mienert J, Boisvert L (eds) Submarine Mass Movements and Their Consequences, 1st International Symposium, Kluwer Academic Publishers, Dordrecht, pp. 531–538.

    Google Scholar 

  • Mazzanti P (2008) Analysis and modelling of coastal landslides and induced tsunamis. PhD Thesis Università di Roma “Sapienza”, Dipartimento di Scienze della Terra.

    Google Scholar 

  • Mazzanti P, Bozzano F, Esposito C (2007) Submerged Landslides Morphologies in the Albano Lake (Rome, Italy). In: Proceedings of 3rd International Symposium “Submarine Mass Movements and Their Consequences”, Series: Advances in Natural and Technological Hazards Research, 27, Springer, Heidelberg, pp. 243–250.

    Chapter  Google Scholar 

  • McDougall S and Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41: 1084–1097.

    Article  Google Scholar 

  • Mohrig D K, Whipple C E, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull. 110: 387–394.

    Article  Google Scholar 

  • Nielsen T, Kuijpers A (2004) Geohazard studies offshore the Faroe Islands: Slope instability, bottom currents and sub-seabed sediment mobilisation. Geol Soc Den Greenland Bull 4: 57–60.

    Google Scholar 

  • Prior D B, Borhold B D, Coleman J M, Bryant W R (1982b) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10: 588–592.

    Article  Google Scholar 

  • Prior D B, Borhold B D, Johns M W (1984) Depositional characteristics of a submarine debris flow. J Geol 92: 707–727.

    Article  Google Scholar 

  • Prior D B, Coleman J M, Borhold B D (1982a) Results of a known sea floor instability event. Geo Mar Lett 2: 117–122.

    Article  Google Scholar 

  • Rhodes M (1998)9 Introduction to Particle Technology. Wiley, Chichester, 320 pp.

    Google Scholar 

  • Schnellmann M, Anselmetti F S, Giardini D, McKenzie J A (2005) Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentol 52: 271–289.

    Article  Google Scholar 

  • Vanneste M, Harbitz C B, De Blasio F V, Glimsdal S, Mienert J, Elverhøi A (2009) The Hinlopen-Yermak landslide, Arctic Ocean. Geomorphology, landslide dynamics and tsunami simulations. In Shipp C, Weimer P, Posamentier H (eds) The Importance of Mass-Transport Deposits in Deepwater Settings. Soc Sediment Geol Spec Pub (In press).

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. F. Bozzano and Prof. F.L. Chiocci for enjoyable discussions about the main topics of this paper and for financial support. The manuscript benefited from revisions by Dr. A. Cattaneo and Dr. M. Owen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mazzanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mazzanti, P., De Blasio, F.V. (2010). Peculiar Morphologies of Subaqueous Landslide Deposits and Their Relationship to Flow Dynamics. In: Mosher, D.C., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3071-9_12

Download citation

Publish with us

Policies and ethics