Skip to main content

Stem Cell Niche Versus Cancer Stem Cell Niche – Differences and Similarities

  • Chapter
  • First Online:
Stem Cell Biology in Health and Disease

Abstract

The organization of normal tissues and organs is thought to be based on stem cells, which are present as a small proportion of the total tissue. Stem cells in turn absolutely require supporting structures to maintain their self-renewal properties and such structures are termed niches. A large amount of evidence now supports the concept that tumors are also maintained by tumor stem cells, and by implication such cells will be contained within tumor stem cell niches. In this review we explore the hypothesis that the transition of the normal niche to the tumor niche occurs over a significant period of time and that different intermediate stages, termed here the “inflammatory niche” and the “immunological niche”, can be discerned. The inflammatory niche provides a chronic stress stimulus which causes an increased rate of stem cell proliferation while the immunological niche provides mechanisms to inhibit the proliferation of potential tumor cells that have formed in the inflammatory niche. The tumor cell niche therefore represents the ultimate breakdown of such proliferation control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendall SC, Stewart MH, Menendez P et al. (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021.

    Article  PubMed  CAS  Google Scholar 

  2. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526.

    Article  PubMed  CAS  Google Scholar 

  3. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885.

    Article  PubMed  CAS  Google Scholar 

  4. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128.

    Article  PubMed  CAS  Google Scholar 

  5. Akala OO, Park IK, Qian D et al. (2008) Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 453:228–232.

    Article  PubMed  CAS  Google Scholar 

  6. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1:140–152.

    Article  PubMed  CAS  Google Scholar 

  7. Bouchard C, Lee S, Paulus-Hock V et al. (2007) FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 21:2775–2787.

    Article  PubMed  CAS  Google Scholar 

  8. Katayama K, Nakamura A, Sugimoto Y et al. (2008) FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene 27:1677–1686.

    Article  PubMed  CAS  Google Scholar 

  9. Arden KC (2007) FoxOs in tumor suppression and stem cell maintenance. Cell 128:235–237.

    Article  PubMed  CAS  Google Scholar 

  10. Yilmaz OH, Valdez R, Theisen BK et al. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482.

    Article  PubMed  CAS  Google Scholar 

  11. Ying QL, Wray J, Nichols J et al. (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523.

    Article  PubMed  CAS  Google Scholar 

  12. Korinek V, Barker N, Moerer P et al. (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383.

    Article  PubMed  CAS  Google Scholar 

  13. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260.

    Article  PubMed  CAS  Google Scholar 

  14. Grinstein E, Wernet P (2007) Cellular signaling in normal and cancerous stem cells. Cell Signal 19:2428–2433.

    Article  PubMed  CAS  Google Scholar 

  15. Duan Z, Horwitz M (2005) Gfi-1 takes center stage in hematopoietic stem cells. Trends Mol Med 11:49–52.

    Article  PubMed  CAS  Google Scholar 

  16. Lee JY, Jang KS, Shin DH et al. (2008) Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 68:4201–4209.

    Article  PubMed  CAS  Google Scholar 

  17. Fuentealba LC, Eivers E, Geissert D et al. (2008) Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105:7732–7737.

    Article  PubMed  CAS  Google Scholar 

  18. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638.

    Article  PubMed  CAS  Google Scholar 

  19. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867.

    Article  PubMed  CAS  Google Scholar 

  20. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550.

    Article  PubMed  CAS  Google Scholar 

  21. Hagemann T, Balkwill F, Lawrence T (2007) Inflammation and cancer: a double-edged sword. Cancer Cell 12:300–301.

    Article  PubMed  CAS  Google Scholar 

  22. Lee JM, Yanagawa J, Peebles KA et al. (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66:208–217.

    Article  PubMed  Google Scholar 

  23. Morel AP, Lievre M, Thomas C et al. (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888.

    Article  PubMed  Google Scholar 

  24. Dumont N, Wilson MB, Crawford YG et al. (2008) Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA 105:14867–14872.

    Article  PubMed  CAS  Google Scholar 

  25. Congdon KL, Voermans C, Ferguson EC et al. (2008) Activation of Wnt signaling in hematopoietic regeneration. Stem Cells 26:1202–1210.

    Article  PubMed  CAS  Google Scholar 

  26. Gebhardt C, Riehl A, Durchdewald M et al. (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205:275–285.

    Article  PubMed  CAS  Google Scholar 

  27. Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267:197–203.

    Article  PubMed  CAS  Google Scholar 

  28. Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210.

    Article  PubMed  Google Scholar 

  29. De Marzo AM, Platz EA, Sutcliffe S et al. (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269.

    Article  PubMed  Google Scholar 

  30. Schedin P (2006) Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 6:281–291.

    Article  PubMed  CAS  Google Scholar 

  31. Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128:1567–1578.

    Article  PubMed  CAS  Google Scholar 

  32. Takaishi S, Okumura T, Wang TC (2008) Gastric cancer stem cells. J Clin Oncol 26:2876–2882.

    Article  PubMed  Google Scholar 

  33. Ruiter DJ, Bhan AK, Harrist TJ et al. (1982) Major histocompatibility antigens and mononuclear inflammatory infiltrate in benign nevomelanocytic proliferations and malignant melanoma. J Immunol 129:2808–2815.

    PubMed  CAS  Google Scholar 

  34. Hart PH, Grimbaldeston MA, Finlay-Jones JJ (2001) Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol 28:1–8.

    Article  PubMed  CAS  Google Scholar 

  35. Wilgus TA, Koki AT, Zweifel BS et al. (2003) Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol Carcinog 38:49–58.

    Article  PubMed  CAS  Google Scholar 

  36. Kripke ML (1988) Immunoregulation of carcinogenesis: Past, present, and future. J Natl Cancer Inst 80:722–727.

    Article  PubMed  CAS  Google Scholar 

  37. Hutchin ME, Kariapper MS, Grachtchouk M et al. (2005) Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 19:214–223.

    Article  PubMed  CAS  Google Scholar 

  38. Ding L, Getz G, Wheeler DA et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  39. MacKie RM, Reid R, Junor B et al. (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348:567–568.

    Article  PubMed  Google Scholar 

  40. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846.

    Article  PubMed  CAS  Google Scholar 

  41. Koebel CM, Vermi W, Swann JB et al. (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907.

    Article  PubMed  CAS  Google Scholar 

  42. Muller-Hermelink N, Braumuller H, Pichler B et al. (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518.

    Article  PubMed  Google Scholar 

  43. Kortylewski M, Komyod W, Kauffmann ME et al. (2004) Interferon-gamma-mediated growth regulation of melanoma cells: Involvement of STAT1-dependent and STAT1-independent signals. J Invest Dermatol 122:414–422.

    Article  PubMed  CAS  Google Scholar 

  44. Schewe DM, Aguirre-Ghiso JA (2008) ATF6à-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524.

    Article  PubMed  CAS  Google Scholar 

  45. Duff MD, Mestre J, Maddali S et al. (2007) Analysis of gene expression in the tumor-associated macrophage. J Surg Res 142:119–128.

    Article  PubMed  CAS  Google Scholar 

  46. Kuilman T, Michaloglou C, Vredeveld LC et al. (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031.

    Article  PubMed  CAS  Google Scholar 

  47. Acosta JC, O‘Loghlen A, Banito A et al. (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7:2956–2959.

    Article  PubMed  CAS  Google Scholar 

  48. Baguley BC (2006) Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Pat Anti-Cancer Drug Discovery 1:121–127.

    Article  CAS  Google Scholar 

  49. Fonseca C, Dranoff G (2008) Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res 14:1603–1608.

    Article  PubMed  CAS  Google Scholar 

  50. Weinberg RA (2008) Twisted epithelial-mesenchymal transition blocks senescence. Nat Cell Biol 10:1021–1023.

    Article  PubMed  CAS  Google Scholar 

  51. Pollard JW (2004) Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer 4:71–78.

    Article  PubMed  CAS  Google Scholar 

  52. Kramer A, Lukas J, Bartek J (2004) Checking out the centrosome. Cell Cycle 3:1390–1393.

    Article  PubMed  CAS  Google Scholar 

  53. McDermott KM, Zhang J, Holst CR et al. (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4:e51.

    Article  PubMed  Google Scholar 

  54. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341.

    Article  PubMed  CAS  Google Scholar 

  55. Kunz M (2008) Genomic signatures for individualized treatment of malignant tumors. Curr Drug Discov Technol 5:9–14.

    Article  PubMed  CAS  Google Scholar 

  56. Hendrix MJ, Seftor EA, Hess AR et al. (2003) Vasculogenic mimicry and tumor-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Baguley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baguley, B.C., Finlay, G.J. (2009). Stem Cell Niche Versus Cancer Stem Cell Niche – Differences and Similarities. In: Dittmar, T., Zanker, K. (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3040-5_10

Download citation

Publish with us

Policies and ethics