Skip to main content

High-Accuracy Comparison Between the Post-Newtonian and Self-Force Dynamics of Black-Hole Binaries

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 162))

Abstract

The relativistic motion of a compact binary system moving in circular orbit is investigated using the post-Newtonian (PN) approximation and the perturbative self-force (SF) formalism. A particular gauge-invariant observable quantity is computed as a function of the binary’s orbital frequency. The conservative effect induced by the gravitational SF is obtained numerically with high precision, and compared to the PN prediction developed to high order. The PN calculation involves the computation of the 3PN regularized metric at the location of the particle. Its divergent self-field is regularized by means of dimensional regularization. The poles \(\propto {(d - 3)}^{-1}\) that occur within dimensional regularization at the 3PN order disappear from the final gauge-invariant result. The leading 4PN and next-to-leading 5PN conservative logarithmic contributions originating from gravitational wave tails are also obtained. Making use of these exact PN results, some previously unknown PN coefficients are measured up to the very high 7PN order by fitting to the numerical SF data. Using just the 2PN and new logarithmic terms, the value of the 3PN coefficient is also confirmed numerically with very high precision. The consistency of this cross-cultural comparison provides a crucial test of the very different regularization methods used in both SF and PN formalisms, and illustrates the complementarity of these approximation schemes when modeling compact binary systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As usual the nPN order refers to terms equivalent to (vc)2n beyond Newtonian theory, where v is a typical internal velocity of the material system and c is the speed of light.

  2. 2.

    Since we are interested in the motion of the small particle m 1, we remove the index 1 from u 1 α.

  3. 3.

    In all of this section we shall set \(G = c = 1\).

  4. 4.

    Here g αβ is the contravariant metric, inverse of the covariant metric g αβ of determinant g = det(g αβ), and \({\eta }^{\alpha \beta } =\mathrm{ diag}(-1, 1, 1, 1)\) represents an auxiliary Minkowski metric in Cartesian coordinates.

  5. 5.

    We use shorthands such as x ab = x a x b; \(\hat{{x}}^{abc} = {x}^{abc} -\frac{1} {5}({\delta }^{ab}{x}^{c} + {\delta }^{ac}{x}^{b} + {\delta }^{bc}{x}^{a}){r}^{2}\) denotes the symmetric and trace-free part of x abc; ε abc is the Levi-Civita antisymmetric symbol.

  6. 6.

    The Landau o symbol for remainders takes its standard meaning.

References

  1. P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan, A.M. Sintes, J.T. Whelan, B. Bruegmann, P. Diener, N. Dorband, J. Gonzalez, M. Hannam, S. Husa, D. Pollney, L. Rezzolla, L. Santamaria, U. Sperhake, J. Thornburg, Phys. Rev. D 77, 104017 (2008); Erratum, ibidem 79, 129901 (2009)

    Google Scholar 

  2. J.L. Anderson, in Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers (North Holland, Amsterdam, 1979), p. 289

    Google Scholar 

  3. J.L. Anderson, R.E. Kates, L.S. Kegeles, R.G. Madonna, Phys. Rev. D 25, 2038 (1982)

    Article  ADS  Google Scholar 

  4. L. Barack, Class. Q. Grav. 26, 213001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Blanchet, Phys. Rev. D 47, 4392 (1993)

    Article  ADS  Google Scholar 

  6. L. Blanchet, T. Damour, Phil. Trans. R. Soc. Lond. A 320, 379 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. L. Blanchet, T. Damour, Phys. Rev. D 37, 1410 (1988)

    Article  ADS  Google Scholar 

  8. L. Blanchet, T. Damour, Phys. Rev. D 46, 4304 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Blanchet, T. Damour, G. Esposito-Farèse, Phys. Rev. D 69, 124007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Blanchet, T. Damour, G. Esposito-Farèse, B.R. Iyer, Phys. Rev. Lett. 93, 091101 (2004)

    Article  ADS  Google Scholar 

  11. L. Blanchet, S. Detweiler, A. Le Tiec, B.F. Whiting, Phys. Rev. D 81, 064004 (2010)

    Article  ADS  Google Scholar 

  12. L. Blanchet, S. Detweiler, A. Le Tiec, B.F. Whiting, Phys. Rev. D 81, 084033 (2010)

    Article  ADS  Google Scholar 

  13. L. Blanchet, G. Faye, Phys. Rev. D 63, 062005 (2001)

    Article  ADS  Google Scholar 

  14. L. Blanchet, G. Faye, B.R. Iyer, B. Joguet, hys. Rev. D 65, 061501(R) (2002); Erratum, ibidem 71, 129902(E) (2005)

    Google Scholar 

  15. L. Blanchet, G. Faye, B.R. Iyer, S. Sinha, Class. Q. Grav. 25, 165003 (2008)

    Article  ADS  Google Scholar 

  16. L. Blanchet, G. Faye, B. Ponsot. Phys. Rev. D 58, 124002 (1998)

    Article  ADS  Google Scholar 

  17. L. Blanchet, B.R. Iyer, B. Joguet, Phys. Rev. D 65, 064005 (2002); Erratum, ibidem 71, 129903(E) (2005)

    Google Scholar 

  18. L. Blanchet, B.R. Iyer, C.M. Will, A.G. Wiseman, Class. Q. Grav. 13, 575 (1996)

    Article  MATH  ADS  Google Scholar 

  19. C.G. Bollini, J.J. Giambiagi, Phys. Lett. B 40, 566 (1972)

    Article  ADS  Google Scholar 

  20. M. Boyle, A. Buonanno, L.E. Kidder, A.H. Mroue, Y. Pan, H.P. Pfeiffer, M.A. Scheel, Phys. Rev. D 78, 104020 (2008)

    Article  ADS  Google Scholar 

  21. A. Buonanno, T. Damour, Phys. Rev. D 59, 084006 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  22. W.L. Burke, J. Math. Phys. 12, 401 (1971)

    Article  ADS  Google Scholar 

  23. W.L. Burke, K.S. Thorne, in Relativity, ed. by M. Carmeli, S.I. Fickler, L. Witten (Plenum, New York, 1970), p. 209

    Google Scholar 

  24. C. Cutler, T.A. Apostolatos, L. Bildsten, L.S. Finn, E.E. Flanagan, D. Kennefick, D.M. Markovic, A. Ori, E. Poisson, G.J. Sussman, K.S. Thorne, Phys. Rev. Lett. 70, 2984 (1993)

    Article  ADS  Google Scholar 

  25. C. Cutler, L.S. Finn, E. Poisson, G.J. Sussman, Phys. Rev. D 47, 1511 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Damour, P. Jaranowski, G. Schäfer, Phys. Lett. B 513, 147 (2001)

    Article  MATH  ADS  Google Scholar 

  27. S. Detweiler, Class. Q. Grav. 22, S681 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. S. Detweiler, Phys. Rev. D 77, 124026 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Detweiler, E. Messaritaki, B.F. Whiting, Phys. Rev. D 67, 104016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Detweiler, B.F. Whiting, Phys. Rev. D 67, 024025 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Futamase, Phys. Rev. D 28, 2373 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Futamase, B.F. Schutz, Phys. Rev. D 28, 2363 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  33. S.E. Gralla, R.M. Wald, Class. Q. Grav. 25, 205009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. G.D. Kerlick, Gen. Rel. Grav. 12, 467 (1980)

    Article  ADS  Google Scholar 

  35. G.D. Kerlick, Gen. Rel. Grav. 12, 521 (1980)

    Article  ADS  Google Scholar 

  36. Y. Mino, M. Sasaki, T. Tanaka, Phys. Rev. D 55, 3457 (1997)

    Article  ADS  Google Scholar 

  37. E. Poisson, Phys. Rev. D 47, 1497 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Poisson, Phys. Rev. D 48, 1860 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  39. E. Poisson, Phys. Rev. D 52, 5719 (1995); Erratum and Addendum, ibidem 55, 7980 (1997)

    Google Scholar 

  40. E. Poisson, Living Rev. Rel. 7, URL (cited on 20 June 2010): http://www.livingreviews.org/lrr-2004-6

  41. E. Poisson, M. Sasaki, Phys. Rev. D 51, 5753 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  42. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  43. T.C. Quinn, R.M. Wald, Phys. Rev. D 56, 3381 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  44. N. Sago, L. Barack, S. Detweiler, Phys. Rev. D 78, 124024 (2008)

    Article  ADS  Google Scholar 

  45. H. Tagoshi, T. Nakamura, Phys. Rev. D 49, 4016 (1994)

    Article  ADS  Google Scholar 

  46. H. Tagoshi, M. Shibata, T. Tanaka, M. Sasaki, Phys. Rev. D 54, 1439 (1996)

    Article  ADS  Google Scholar 

  47. T. Tanaka, H. Tagoshi, M. Sasaki, Prog. Theor. Phys. 96, 1087 (1996)

    Article  ADS  Google Scholar 

  48. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    Google Scholar 

  49. K.S. Thorne, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), p. 330

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the 2008 Summer School on Mass and Motion, organized by A. Spallicci and supported by the University of Orléans and the CNRS, through which we experienced an extensive opportunity to understand each other’s perspective and make rapid progress on this work. SD and BFW acknowledge support through grants PHY-0555484 and PHY-0855503 from the National Science Foundation. LB and ALT acknowledge support from the Programme International de Coopération Scientifique (CNRS–PICS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Le Tiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blanchet, L., Detweiler, S., Le Tiec, A., Whiting, B.F. (2009). High-Accuracy Comparison Between the Post-Newtonian and Self-Force Dynamics of Black-Hole Binaries. In: Blanchet, L., Spallicci, A., Whiting, B. (eds) Mass and Motion in General Relativity. Fundamental Theories of Physics, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3015-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3015-3_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3014-6

  • Online ISBN: 978-90-481-3015-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics