Skip to main content

Elementary Development of the Gravitational Self-Force

  • Chapter
  • First Online:
Mass and Motion in General Relativity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 162))

  • 2240 Accesses

Abstract

The gravitational field of a particle of small mass m moving through curved spacetime, with metric g ab , is naturally and easily decomposed into two parts each of which satisfies the perturbed Einstein equations through O(m). One part is an inhomogeneous field h ab S which, near the particle, looks like the Coulomb mr field with tidal distortion from the local Riemann tensor. This singular field is defined in a neighborhood of the small particle and does not depend upon boundary conditions or upon the behavior of the source in either the past or the future. The other part is a homogeneous field h ab R. In a perturbative analysis, the motion of the particle is then best described as being a geodesic in the metric g ab + h ab R. This geodesic motion includes all of the effects which might be called radiation reaction and conservative effects as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the acceleration of gravity \(\vec{g}\) differs significantly across a large object, then the center of mass moves responding to some average, over the object, of \(\vec{g}\) which does not necessarily match a free-fall trajectory.

  2. 2.

    Following Dirac’s [31] usage, I prefer to use the word “actual” to refer to the complete, and total field that might be measured at some location. Often in self-force treatises the “retarded field” plays this central role. But, this obscures the fact that, viewed from near by, a local observer unaware of boundary conditions could make no measurement which would reveal just what part of the field is the retarded field. This confusion is increased if the spacetime is not flat, so that the retarded field could be determined only if the entire spacetime geometry were known.

  3. 3.

    A terse but adequate description of perturbative tidal effects on a Newtonian, self-gravitating, non-rotating, incompressible fluid is given on p. 467 of [16].

  4. 4.

    Expansions for the somewhat related “direct” field are also available [3, 4, 7, 37, 38, 43, 45], though their use is, similarly, not at all elementary.

  5. 5.

    In fact the singular field was discovered first [24] using matched asymptotic expansions. And the Green’s function appeared only later during an attempt to show consistency with the usual DeWitt-Brehme [30] approach to radiation reaction.

References

  1. L. Barack, Phys. Rev. D 64, 084021 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  2. L. Barack, A. Ori, Phys. Rev. D 64, 124003 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  3. L. Barack, A. Ori, Phys. Rev. D 66, 084022 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Barack, A. Ori, Phys. Rev. D 67, 024029 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Barack, N. Sago, Phys. Rev. D 75, 064021 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. L. Barack, N. Sago, Phys. Rev. Lett. 102, 191101 (2009)

    Article  ADS  Google Scholar 

  7. L. Barack, Y. Mino, H. Nakano, A. Ori, M. Sasaki, Phys. Rev. Lett. 88, 091101 (2002)

    Article  ADS  Google Scholar 

  8. L. Barack, D.A. Golbourn, N. Sago, Phys. Rev. D 76, 124036 (2007)

    Article  ADS  Google Scholar 

  9. J.M. Bardeen, Phys. Rev. D 22, 1882 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Blanchet, Living Rev. Rel. 9, URL: http://www.livingreviews.org/lrr-2006-4

  11. L. Blanchet, G. Faye, B. Ponsot, Phys. Rev. D 58, 124002 (1998)

    Article  ADS  Google Scholar 

  12. L. Blanchet, S. Detweiler, A. Le Tiec, B.F. Whiting, Phys. Rev. D 81, 064004 (2010)

    Article  ADS  Google Scholar 

  13. L. Blanchet, S. Detweiler, A. Le Tiec, B.F. Whiting, Phys. Rev D 81, 084033 (2010)

    Article  ADS  Google Scholar 

  14. B. Carter, Comm. Math. Phys. 10, 280 (1968)

    MATH  MathSciNet  Google Scholar 

  15. B. Carter, Phys. Rev. 174, 1559 (1968)

    Article  MATH  ADS  Google Scholar 

  16. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, ed. by W. Marshall, D.H. Wilkinson (Oxford University at the Clarendon Press, Oxford, 1961; reprinted by Dover, New York, 1981)

    Google Scholar 

  17. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983)

    MATH  Google Scholar 

  18. S. Chandrasekhar, S. Detweiler, Proc. R. Soc. Lond. 344, 441 (1975)

    Article  ADS  Google Scholar 

  19. C.T. Cunningham, R.H. Price, V. Moncrief, Astrophys. J. 224, 643 (1979)

    Article  ADS  Google Scholar 

  20. C.T. Cunningham, R.H. Price, V. Moncrief, Astrophys. J. 230, 870 (1979)

    Article  ADS  Google Scholar 

  21. M. Davis, R. Ruffini, W.H. Press, R. Price, Phys. Rev. Lett. 27, 1466 (1971)

    Article  ADS  Google Scholar 

  22. S. Detweiler, in Sources of Gravitational Radiation, ed. by L. Smarr (Cambridge University Press, Cambridge, 1979), pp. 211–230

    Google Scholar 

  23. S. Detweiler, Astrophys. J. 239, 292 (1980)

    Article  ADS  Google Scholar 

  24. S. Detweiler, Phys. Rev. Lett. 86, 1931 (2001)

    Article  ADS  Google Scholar 

  25. S. Detweiler, Class. Q. Grav. 22, S681 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. S. Detweiler, Phys. Rev. D 77, 124026 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Detweiler, E. Poisson, Phys. Rev. D 69, 084019 (2004)

    Article  ADS  Google Scholar 

  28. S. Detweiler, B.F. Whiting, Phys. Rev. D 67, 024025 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Detweiler, E. Messaritaki, B.F. Whiting, Phys. Rev. D 67, 104016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  30. B.S. DeWitt, R.W. Brehme, Ann. Phys. (N.Y.) 9, 220 (1960)

    Google Scholar 

  31. P.A.M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)

    Article  ADS  Google Scholar 

  32. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  33. L.D. Landau, E.M. Lifshitz, Classical Theory of Fields, 4th edn. (Pergamon, Oxford, 1975)

    Google Scholar 

  34. E.W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  35. E.W. Leaver, Phys. Rev. D 34, 384 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  36. Y. Mino, Phys. Rev. D 67, 084027 (2003)

    Article  ADS  Google Scholar 

  37. Y. Mino, H. Nakano, M. Sasaki, Prog. Theor. Phys. 108, 1039 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Y. Mino, M. Sasaki, T. Tanaka, Phys. Rev. D 55, 3457 (1997)

    Article  ADS  Google Scholar 

  39. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Fransisco, 1973)

    Google Scholar 

  40. E. Poisson, Living Rev. Rel. 7, URL: http://www.livingreviews.org/lrr-2004-6

  41. E. Poisson, Phys. Rev. D 69, 084007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Poisson, Phys. Rev. D 70, 084044 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Poisson, Phys. Rev. Lett. 94, 161103 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  44. W.H. Press, Astrophys. J. 170, L105 (1971)

    Article  ADS  Google Scholar 

  45. T.C. Quinn, R.M. Wald, Phys. Rev. D 56, 3381 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  46. T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. R. Sachs, in Relativity, Groups and Topology, ed. by B. DeWitt, C. DeWitt (Gordon and Breach, New York, 1964)

    Google Scholar 

  48. N. Sago, L. Barack, S. Detweiler, Phys. Rev. D 78, 124024 (2008)

    Article  ADS  Google Scholar 

  49. M. Sasaki, T. Nakamura, Prog. Theor. Phys. 67, 1788 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. J.M. Stewart, M. Walker, Proc. R. Soc. Lond. 341, 49 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Teukolsky, Astrophys. J. 185, 635 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  52. K.S. Thorne, J.B. Hartle, Phys. Rev. D 31, 1815 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  53. K.S. Thorne, S.J. Kovács, Astrophys. J. 200, 245 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  54. I. Vega, S. Detweiler, Phys. Rev. D 77, 084008 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  55. I. Vega, P. Diener, W. Tichy, S. Detweiler, Phys. Rev. D 80, 084021 (2009)

    Article  ADS  Google Scholar 

  56. C.V. Vishveshwara, Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  57. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  58. B.F. Whiting, J. Math. Phys. 30, 1301 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. B.F. Whiting, L.R. Price, Class. Q. Grav. 22, S589 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. F.J. Zerilli, Phys. Rev. D 2, 2141 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  61. X.-H. Zhang, Phys. Rev. D 31, 3130 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  62. X.-H. Zhang, Phys. Rev. D 34, 991 (1986)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

My understanding of gravitational self-force effects has evolved over the past decade in large part in discussions with colleagues during the annual Capra meetings. I am deeply indebted to the organizers and participants of these fruitful meetings. And I am particularly pleased to have had recent collaborators Leor Barack, Peter Diener, Eric Poisson, Norichika Sago, Wolfgang Tichy, Ian Vega, and Bernard Whiting, who individually and as a group have kept me on track and moving forward. This work was supported in part by the National Science Foundation, through grant number PHY-0555484 with the University of Florida. Some of the numerical results described here were preformed at the University of Florida High-Performance Computing Center (URL: http://hpc.ufl.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Detweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Detweiler, S. (2009). Elementary Development of the Gravitational Self-Force. In: Blanchet, L., Spallicci, A., Whiting, B. (eds) Mass and Motion in General Relativity. Fundamental Theories of Physics, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3015-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3015-3_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3014-6

  • Online ISBN: 978-90-481-3015-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics