Skip to main content

Chemomechanical Dynamics of Responsive Gels

  • Conference paper
Book cover Chemomechanical Instabilities in Responsive Materials

Abstract

In this contribution we present a formalism to describe the spatio-temporalevolution of a responsive gel submitted to some autocatalytic chemical reaction. This theory is based on an hydrodynamical multi-diffusional approach of a gel, which is plunged in a chemically active mixture. Emergent volume self-oscillation dynamics of the gel result from the nonlinear coupling of the elastic deformation, the chemical kinetics and the transport phenomenon, that take place in the system. We apply our formalism to the case of the Belouzov-Zhabotinsky oscillatory chemical reaction, for which Yoshida et al. (see in this volume) have obtained many experimental results. In particular we discuss some possible coupling between the gel and the chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R. A. Siegel, Adv. Drug Deliv. Revs. 56, 145 (2004).

    Article  Google Scholar 

  2. J. P. Gong, Y. Osada, in Polymer Sensor and Actuators (eds. Y. Osada, D. E. De Rossi, Eds, Springer Verlag, Berlin, 2000).

    Google Scholar 

  3. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B-H. Jo, Nature 404, 588 (2000).

    Article  ADS  Google Scholar 

  4. T. Shiga, Adv. Polymer Sci. 134, 131 (1997).

    Article  Google Scholar 

  5. H. Andersson, A. van den Berg, Lab Chip 4, 98 (2004).

    Article  Google Scholar 

  6. R. Siegel in this volume.

    Google Scholar 

  7. T. Tanaka, Phys.Rev. Lett. 40, 820 (1978).

    Article  ADS  Google Scholar 

  8. K. Dusek (Ed.), Responsive Gels: Volume Transitions, Adv. Polymer Sci. 109 and 110 (Springer, Berlin, 1993).

    Google Scholar 

  9. M. Bisschops, K. Luyben, L. van der Wielen, Ind. Eng. Chem. Res. 37, 3312 (1998).

    Article  Google Scholar 

  10. S. Wu, H. Li, J. P. Chen, K. Y. Lam, Macromol. Theory Simul 13, 13 (2004).

    Article  Google Scholar 

  11. E. C. Achilleos, K. N. Christodoulou, I. G. Kevrekidis, Comput. Theor. Polym. Sci. 1, 63 (2001).

    Article  Google Scholar 

  12. V. V Yashin, A. C. Balazs, Science 314, 798 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. V Yashin, A. C. Balazs, Macromolecules 39, 2024 (2006).

    Article  ADS  Google Scholar 

  14. O. Kuksenok, V. V Yashin, A. C. Balazs, Phys. Rev. E 78, 041406 (2008).

    Article  ADS  Google Scholar 

  15. M. Doi, 2008, Modeling of Gels (slides for IMA Tutorial). http://www.ima.umn.edu/ matter/fall/t1.html.

  16. K. Sekimoto, J. Phys.II (Fr) 1, 19 (1991).

    Article  Google Scholar 

  17. K. Sekimoto, J. Phys.II (Fr) 2, 1755 (1992).

    Article  Google Scholar 

  18. B. Barrière, L. Leibler, J. Polym. Sci. B, 41, 166 (2003).

    Google Scholar 

  19. R. Yoshida, in this volume.

    Google Scholar 

  20. R. Yoshida, H. Ichijo, T. Hakuta, T. Yamaguchi, Macromol. Rapid. Commun. 16, 305 (1995).

    Article  Google Scholar 

  21. R. Yoshida, T. Yamagushi, H. Ichijo, Material Science and Engineering. 4, 107 (1996).

    Article  Google Scholar 

  22. R. Yoshida, E. Kokufuta, T. Yamagushi, Chaos 9, 260 (1999).

    Article  ADS  Google Scholar 

  23. K. Miyakawa, F. Sakamoto, R. Yoshida, E. Kokufuta, T. Yamaguchi, Phys. Rev. E 62, 793 (2000).

    Article  ADS  Google Scholar 

  24. R. Yoshida, T. Takahashi, T. Yamaguchi, H. Ichijo, J. Am. Chem. Soc. 118, 5134 (1996).

    Article  Google Scholar 

  25. R. Yoshida, T. Takahashi, T. Yamaguchi, H. Ichijo, Adv. Mater. 9, 175 (1997).

    Article  Google Scholar 

  26. R. Yoshida, T. Sakai, O. Tambata, T. Yamaguchi, Sci. and Tech. Adv. Mat. 3, 95 (2002).

    Article  Google Scholar 

  27. T. Sakai, R. Yoshida, Langmuir 20, 1036 (2004).

    Article  Google Scholar 

  28. R. Yoshida, T. Onodera, T. Yamaguchi, E. Kokufuta, J. Phys. Chem. 103, 8573 (1999).

    Google Scholar 

  29. C. Crook, A. Smith, R. Jones, A. Ryan, Phys. Chem. Chem. Phys. 4, 1367 (2002).

    Article  Google Scholar 

  30. P. Borckmans, G. Dewel, A. De Wit, E. Dulos, J. Boissonade, F. Gauffre, P. De Kepper, Int. J. Bif. and Chaos 12, 2307 (2002).

    Article  MATH  Google Scholar 

  31. J. Boissonnade and P. De Kepper, in this volume.

    Google Scholar 

  32. U. P. Schröder, W. Opperman, W. in The physical properties of polymeric gels, ed. J. P. Cohen-Addad, John Wiley and Sons Ltd., (1996).

    Google Scholar 

  33. P. J. Flory, Statistical Mechanics of Chain Molecules, Wiley-Intersciences (1969).

    Google Scholar 

  34. G. Strobl, The Physics of Polymers, Third Edition, Springer (2007).

    Google Scholar 

  35. M. Rubinstein, R. Colby, Polymer Physics, Oxford University Press (2003).

    Google Scholar 

  36. J. J. Hermanns, J. Poly. Sci., 59, 191 (1962).

    Article  ADS  Google Scholar 

  37. W. M. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics, Third Ed., Butterworth Heinemann (1999).

    Google Scholar 

  38. K. Yoshimura, K. Sekimoto, J. Chem. Phys 101, 4407 (1994).

    Article  ADS  Google Scholar 

  39. P. C. Parodi, O. Parodi, P. S. Pershan, Phys. Rev. A 6, 2401 (1972).

    Article  ADS  Google Scholar 

  40. P. D. Fleming, C. Cohen, Phys. Rev. B 13, 500 (1976).

    Article  ADS  Google Scholar 

  41. D. L. Johnson, J. Chem. Phys 77, 1531 (1982).

    Article  ADS  Google Scholar 

  42. T. C. Lubensky, R. Mukhopadhyay L. Radzihovsky, X. Xing, Phys. Rev. E 66, 66011702 (2002).

    ADS  Google Scholar 

  43. T. Tanaka, J. Filmore, J. Chem. Phys. 70, 1214 (1979).

    Article  ADS  Google Scholar 

  44. Y. Li, T. Tanaka, J. Chem. Phys 92, 1365, (1990).

    Article  ADS  Google Scholar 

  45. E. Geissler, A. M. Hecht, J. Chem. Phys 77, 1548 (1982).

    Article  ADS  Google Scholar 

  46. E. S. Matsuo, T. Tanaka, J. Chem. Phys 90, 5161 (1989).

    Article  ADS  Google Scholar 

  47. A. Peters, S. J. Candau, Macromolecules 21, 2278 (1988).

    Article  ADS  Google Scholar 

  48. C. J. Durning, K. N. Morman, J. Chem. Phys 98, 4275 (1992).

    Article  ADS  Google Scholar 

  49. T. Tomari, M. Doi, Macromolecules 28, 8334 (1995).

    Article  ADS  Google Scholar 

  50. T. Tomari, M. Doi, J. Phys. Soc. Japan 63, 2093 (1994).

    Article  ADS  Google Scholar 

  51. K. De Sudipto, N. R. Aluru, B. Johnson, W. C. Crone, D. J. Beebe, J. Moore J. of Microelectromechanical Syst. 11, 544 (2002).

    Article  Google Scholar 

  52. G. Rossi, A. Mazich, Phys. Rev. E 48, 1182 (1992).

    Article  ADS  Google Scholar 

  53. S. Métens, S. Villain, P. Borckmans to appear in Physica D. doi:10.1016/j.physd. 2009.06.002 (2009).

    Google Scholar 

  54. P. De Kepper, J. Boissonade, I. Szalai, in this volume.

    Google Scholar 

  55. P. Borckmans, S. Métens, in this volume.

    Google Scholar 

  56. P. Gray, S. K. Scott, Chemical oscillations and Instabilities, Clarendon Press — Oxford (1990).

    Google Scholar 

  57. I. R. Epstein, J. Pojman, An introduction to Nonlinear Chemical Dynamics, Oxford University Press, (1998).

    Google Scholar 

  58. Z. Nagy Ungvarai, B. Hess, Physica D 49, 33 (1991).

    Article  ADS  Google Scholar 

  59. R. J. Field, E. Körös, R. M. Noyes, J. Am. Chem Soc., 94 8649 (1972).

    Article  Google Scholar 

  60. L. Kuhnert, K. I. Agladze, and V. I. Krinsky, Nature 337, 244 (1989).

    Article  ADS  Google Scholar 

  61. J. Tyson, J. Phys. Chem. 86, 3006 (1982).

    Article  Google Scholar 

  62. P. De Kepper, K. Bar Eli, R. Noyes, J. Phys. Chem 87, 480 (1983).

    Article  Google Scholar 

  63. K. Bar Eli, R. Noyes, J. Chem. Phys 86, 1927 (1987).

    Article  ADS  Google Scholar 

  64. K. Bar Eli, M. Brons, J. Phys. Chem 94, 7170 (1990).

    Article  Google Scholar 

  65. J. Tyson, J. Chem. Phys 66, 905 (1977).

    Article  ADS  Google Scholar 

  66. J. Tyson, J. Chem. Phys 67, 4297 (1977).

    Article  ADS  Google Scholar 

  67. P. De Kepper, private communication.

    Google Scholar 

  68. F. Gauffre, V. Labrot, J. Boissonade, and P. De Kepper in Nonlinear Dynamics in Polymeric Systems (J. A. Pojman and Q. Tran-Cong-Miyata, Eds), ACS Symposium Series 869, 80 2003.

    Google Scholar 

  69. V. Labrot, P. De Kepper, J. Boissonade, I. Szalai, and F. Gauffre, J. Phys. Chem. B 109, 21476 (2005).

    Article  Google Scholar 

  70. J. Boissonade, P. De Kepper, F. Gauffre and I. Szalai, Chaos 16, 037110 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  71. J. Boissonade, Phys. Rev. Lett. 90, 188302 (2003).

    Article  ADS  Google Scholar 

  72. J. Boissonade, Chaos 15, 023703 (2005).

    Article  ADS  Google Scholar 

  73. M. Tokita, T. Tanaka, J. Chem. Phys. 95, 4613 (1991).

    Article  ADS  Google Scholar 

  74. O. Levenspiel, Chemical Reaction Engineering, 3rd Ed. Wiley (1998).

    Google Scholar 

  75. P. Borckmans, K. Benyaich, A. De Wit, G. Dewel in Nonlinear Dynamics in Polymeric Systems ( J. A. Pojman, Qui Tan-Cong-Miyata, Eds), ACS Symposium Series 869, 58 (2003).

    Article  Google Scholar 

  76. Shibayama and Tanaka, Adv. Polymer Sci. 109, 1 (1993).

    Google Scholar 

  77. B. Erman, P. J. Flory, Macromolecules 19, 2342 (1986).

    Article  ADS  Google Scholar 

  78. T. A. Orofino, P. J. Flory, J. Chem. Phys. 26, 1067 (1957).

    Article  ADS  Google Scholar 

  79. H. Chiu, Y. Lin, Y. Hsu, Biomaterials 23, 1103 (2002).

    Article  Google Scholar 

  80. I. R. Epstein, J. Pojman, An introduction to Nonlinear Chemical Dynamics, Oxford University Press, (1998).

    Google Scholar 

  81. S. Villain, Comportement mécanique de gels soumis ä des réactions auto-catalytiques (in French). Ph.D. Thesis, Université Paris 7 (2007).

    Google Scholar 

  82. J. Horvath, I. Szalai, and P. De Kepper, Science 324, 772 (2009).

    Article  ADS  Google Scholar 

  83. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 14, 15 (2003).

    Google Scholar 

  84. V. R. Tirumala, T. Tominaga, S. Lee, P. D. Butler, E. K. Lin, J. P. Gong, W-l. Wu, J. Phys. Chem. B 112, 8024 (2008).

    Article  Google Scholar 

  85. T. Tominaga, Y. Osada, and J. P. Gong, in this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Métens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Métens, S., Villain, S., Borckmans, P. (2009). Chemomechanical Dynamics of Responsive Gels. In: Borckmans, P., De Kepper, P., Khokhlov, A.R., Métens, S. (eds) Chemomechanical Instabilities in Responsive Materials. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2993-5_6

Download citation

Publish with us

Policies and ethics