Skip to main content

Chemomechanics: Oscillatory Dynamics in Chemoresponsive Gels

  • Conference paper

Abstract

Wereview the different strategies to produce mechanical oscillations by coupling a gel which swells/deswells as a function of the chemical composition of its solvent (‘chemo-responsive gel’) with an autocatalytic reaction kept far from equilibrium. Afterwards we focus on the case of oscillations obtained by coupling the gel with a reaction that exhibits spatial bistability. The principles are illustrated with a simple swelling and reaction-diffusion model and experimental data obtained with the chlorite-tetrathionate reaction an a polyelec-trolyte gel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. De Kepper, J. Boissonade, and I. Szalai, this volume

    Google Scholar 

  2. R. Yoshida, this volume

    Google Scholar 

  3. R. Yoshida, T. Yamaguchi, and H. Ichijo, Mat. Sci. Eng. C 4, 107 (1996).

    Article  Google Scholar 

  4. C.J. Crook, A. Smith, R.A.L. Jones and J. Ryan, Phys. Chem. Chem. Phys. 4, 1367 (2002).

    Article  Google Scholar 

  5. A.J. Ryan et al., Faraday Discuss. 128, 55 (2005).

    Article  ADS  Google Scholar 

  6. J.R. Howse, P.D. Topham, C.J. Crook, A.J. Gleeson, W. Bras, R.A.L. Jones, and A. J. Ryan, Nano Lett. 6, 73 (2006).

    Article  ADS  Google Scholar 

  7. P.D. Topham, J.R. Howse, C.J. Crook, A.J. Gleeson, W. Bras, S.P. Armes, R.A.L. Jones and A. J. Ryan, Macromolecules 40, 4393 (2007).

    Article  ADS  Google Scholar 

  8. R.J. Field and M. Burger, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985).

    Google Scholar 

  9. R. Kapral and K. Showalter, Chemical Patterns and Waves (Klüwer, Amsterdam, 1995).

    Google Scholar 

  10. I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, Oxford, 1998).

    Google Scholar 

  11. R. Yoshida and T. Takahashi, J. Am. Chem. Soc. 118, 5134 (1996).

    Article  Google Scholar 

  12. R. Yoshida, M. Tanaka, S. Onodera, T. Yamaguchi, and E. Kokufuta, J. Phys. Chem. A104, 7549 (2000).

    Google Scholar 

  13. R. Yoshida, E. Kokufuta, and T. Yamaguchi, Chaos 9, 260 (1999).

    Article  ADS  Google Scholar 

  14. K. Miyakawa, F. Sakamoto, R. Yoshida, E. Kokufuta, and T. Yamaguchi, Phys. Rev. E 62, 793 (2000).

    Article  ADS  Google Scholar 

  15. V.V. Yashin and A.C. Balasz, Macromolecules 39, 2024 (2006).

    Article  ADS  Google Scholar 

  16. K. Sekimoto, J. Phys. II (France) 1, 19 (1991).

    Article  Google Scholar 

  17. K. Sekimoto, J. Phys. II (France) 2, 1755 (1992).

    Article  Google Scholar 

  18. S. Villain, Comportement mécanique de gels soumis à des réactions autocatalytiques (in French). PhD Thesis, Univ. Paris VII (2007).

    Google Scholar 

  19. S. Métens, S. Villain, and P. Borckmans, this volume

    Google Scholar 

  20. V. V. Yashin and A. C. Balasz, Science 314, 798 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. V. V. Yashin and A. C. Balasz, J. Chem. Phys. 126, 124707 (2007).

    Article  ADS  Google Scholar 

  22. A.P. Dhanarajan, G.P. Misra, and R.A. Siegel, J. Phys. Chem. A106, 8835 (2002).

    Google Scholar 

  23. G.P. Misra and R.A. Siegel, J. Controll. Release 81, 1 (2002).

    Article  Google Scholar 

  24. X. Zou and R.A. Siegel, J. Chem. Phys. 110, 2267 (1999).

    Article  ADS  Google Scholar 

  25. R.A. Siegel, this volume

    Google Scholar 

  26. J. Boissonade, Phys. Rev. Lett. 90, 188302 (2003).

    Article  ADS  Google Scholar 

  27. J. Boissonade, Chaos 15, 023703 (2005).

    Article  ADS  Google Scholar 

  28. F. Gauffre, V. Labrot, J. Boissonade, and P. De Kepper, “Spontaneous deformations in polymer gels driven by chemomechanical instabilities” in Nonlinear Dynamics in Polymeric Systems, ed. J.A. Pojman and Q. Tran-Cong-Miyata (ACS Symposium Series 869, ACS, Washington, DC, 2003), p. 80

    Google Scholar 

  29. V. Labrot, Structures chimio-mécaniques entretenues: couplage entre une réaction à autocatalyse acide et un gel de polyélectrolyte (in French). PhD Thesis, Univ. Bordeaux I (2004).

    Google Scholar 

  30. V. Labrot, P. De Kepper, J. Boissonade, I. Szalai, and F. Gauffre, J. Phys. Chem. B109, 21476 (2005).

    Google Scholar 

  31. J. Boissonade, P. De Kepper, F. Gauffre and I. Szalai, Chaos 16, 037110 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Fuentes, M.N. Kuperman, J. Boissonade, E. Dulos, F. Gauffre and P. De Kepper, Phys. Rev. E 66, 056205 (2002).

    Article  ADS  Google Scholar 

  33. F. Gauffre, V. Labrot, J. Boissonade, P. De Kepper, and E. Dulos, J. Phys. Chem. A107, 4452 (2003).

    Google Scholar 

  34. D. Strier and J. Boissonade, Phys. Rev. E 70, 016210 (2004).

    Article  ADS  Google Scholar 

  35. I. Szalai, F. Gauffre, V. Labrot, J. Boissonade, and P. De Kepper, J. Phys. Chem. A109, 7849 (2005).

    Google Scholar 

  36. A. Toth, I. Lagzi, and D. Horvath, J. Phys. Chem. 100, 14837 (1996).

    Article  Google Scholar 

  37. D. Horvath and A. Toth, J. Chem. Phys. 108, 1447 (1997).

    Article  ADS  Google Scholar 

  38. P. Blanchedeau and J. Boissonade, Phys. Rev. Lett., 81, 5007 (1998).

    Article  ADS  Google Scholar 

  39. P. Blanchedeau, J. Boissonade, and P. De Kepper, Physica D 147, 283 (2000).

    Article  ADS  Google Scholar 

  40. K. Benyaich, T. Erneux, S. Métens, S. Villain, and P. Borckmans, Chaos 16, 037100 (2006).

    Article  ADS  Google Scholar 

  41. I. Szalai and P. De Kepper, Phys. Chem. Chem. Phys. 8, 1105 (2006).

    Article  Google Scholar 

  42. Z. Virányi, I. Szalai, J. Boissonade, and P. De Kepper, J. Phys. Chem. 111A, 8090 (2007).

    Google Scholar 

  43. P. Borckmans and S. Métens, this volume

    Google Scholar 

  44. M. Doi, Introduction to Polymer Physics (Clarendon Press, Oxford University Press, Oxford, 1996).

    Google Scholar 

  45. T. Tanaka and D.J. Fillmore, J. Chem. Phys. 70, 1214 (1979).

    Article  ADS  Google Scholar 

  46. A. Onuki, Adv. Polym. Sci. 109, 63 (1993).

    Google Scholar 

  47. T. Tomari and M. Doi, Macromolecules 28, 8334 (1995).

    Article  ADS  Google Scholar 

  48. M.A.T. Bisschops, K.Ch.A.M. Luyben and L.A.M. van der Wielen, Ind. Eng. Chem. Res. 37, 3312 (1998).

    Article  Google Scholar 

  49. E.C. Achilleos, K.N. Christodoulou and I.G. Kevrekidis, Comp. Theor. Polym. Sci. 11, 63 (2001).

    Article  Google Scholar 

  50. B. Barrière and L. Leibler, J. Polym. Sc. 41, 166 (2003).

    Google Scholar 

  51. J. Dolbow, E. Fried and H. Ji, J. Mech. Phys. Solids 52, 51 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. T. Yamaue and M. Doi, Phys. Rev. E 69, 041402 (2004).

    Article  ADS  Google Scholar 

  53. T. Yamaue, T. Tanigushi and M. Doi, Mol. Phys. 102, 167 (2004).

    Article  ADS  Google Scholar 

  54. A.G. Ogston, B.N. Preston and J.D. Wells, Proc. R. Soc. Lond. A 333, 297 (1973).

    Article  ADS  Google Scholar 

  55. A.Y. Grossberg and A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994).

    Google Scholar 

  56. G. Strobl, The Physics of Polymers (Springer, Berlin, Heidelberg, New York, 1997).

    Google Scholar 

  57. B. Erman and J.E. Mark, Structure and Properties of Rubberlike Networks (Oxford University Press, Oxford 1997).

    Google Scholar 

  58. J. Bastide and S.J. Candau, “Structure of gels investigated by static scattering techniques” in Physical Properties of Polymeric Gels, ed. J.P. Cohen Addad (Wiley, Chichester, 1996), p. 143

    Google Scholar 

  59. P.J. Flory, Principles of Polymer Chemisty (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  60. E.M. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  61. M.M. Tomadakis and S.V. Sotirchos, AIChE J. 39 397 (1993).

    Article  Google Scholar 

  62. J. Rička and T. Tanaka, Macromolecules 17, 2916 (1984).

    Article  ADS  Google Scholar 

  63. J. Newman and K.E. Thomas-Alyea, Electrochemical Systems (Wiley, New York, 2004).

    Google Scholar 

  64. J. Boissonade, Eur. Phys. J. E 28, 337 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Boissonade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Boissonade, J., De Kepper, P. (2009). Chemomechanics: Oscillatory Dynamics in Chemoresponsive Gels. In: Borckmans, P., De Kepper, P., Khokhlov, A.R., Métens, S. (eds) Chemomechanical Instabilities in Responsive Materials. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2993-5_4

Download citation

Publish with us

Policies and ethics