Skip to main content

Mechanochemical Instabilities in Active Gels

  • Conference paper
Chemomechanical Instabilities in Responsive Materials

Abstract

Stimuli-responsive polymers and their application to smart materials have been widely studied. On the other hand, as a novel bio-mimetic polymer, we have been studying a polymer with an autonomous self-oscillating function by utilizing oscillating chemical reactions. The self-oscillating polymer is composed of poly(N-isopropylacrylamide) (PNIPAAm), in which Ru(bpy)3 is incorporated as a catalyst for the BZ reaction. Under the coexistence of the BZ reactants (malonic acid, sodium bromate, and nitric acid), the polymer undergoes spontaneous cyclic soluble-insoluble changes or swelling-deswelling changes (in the case of gel) without any on-off switching of external stimuli. In this chapter, our recent studies on the self-oscillating polymer and the design of functional material systems using the polymer are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953).

    Google Scholar 

  2. T. Tanaka, Phys. Rev. Lett., 40, 820 (1978); T. Tanaka, Sci. Am., 244, 124 (1981).

    Article  ADS  Google Scholar 

  3. R. Yoshida, Curr. Org. Chem., 9, 1617 (2005).

    Article  Google Scholar 

  4. R. Yoshida, K. Sakai, T. Okano and Y. Sakurai, Adv. Drug Del. Rev., 11, 85 (1993).

    Article  Google Scholar 

  5. T. Okano (Ed.), Biorelated Polymers and Gels — Controlled Release and Applications in Biomedical Engineering, Academic Press, San Diego, CA (1998).

    Google Scholar 

  6. T. Miyata, Stimuli-responsive polymer and gels in Supramolecular Design for Biological Applications (N. Yui, Ed.), CRC Press, Boca Raton, FL, pp. 191–225 (2002).

    Google Scholar 

  7. Y. Osada and A.R. Khokhlov (Eds.), Polymer Gels and Networks, Marcel Dekker, New York (2002).

    Google Scholar 

  8. N. Yui, R.J. Mrsny and K. Park (Eds.), Reflexive Polymers and Hydrogels — Understanding and Designing Fast Responsive Polymeric Systems, CRC Press, Boca Raton, FL (2004).

    Google Scholar 

  9. A.N. Zaikin and A.M. Zhabotinsky, Nature, 225, 535 (1970).

    Article  ADS  Google Scholar 

  10. R.J. Field and M. Burger (Eds.), Oscillations and Traveling Waves in Chemical Systems, Wiley, New York (1985).

    Google Scholar 

  11. I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Oxford University Press, New York (1998).

    Google Scholar 

  12. R. Yoshida, T. Takahashi, T. Yamaguchi and H. Ichijo, J. Am. Chem. Soc., 118, 5134 (1996).

    Article  Google Scholar 

  13. R. Yoshida, T. Takahashi, T. Yamaguchi and H. Ichijo, Adv. Mater., 9, 175 (1997).

    Article  Google Scholar 

  14. R. Yoshida and T. Yamaguchi, in Biorelated Polymers and Gels. Controlled Release and Applications in Biomedical Engineering (T. Okano, Ed.), Academic Press, Boston, MA, Chap. 3 (1998).

    Google Scholar 

  15. R. Yoshida, M. Tanaka, S. Onodera, T. Yamaguchi and E. Kokufuda, J. Phys. Chem. A, 104, 7549 (2000).

    Article  Google Scholar 

  16. R. Yoshida, K. Takei and T. Yamaguchi, Macromolecules, 36, 1759 (2003).

    Article  ADS  Google Scholar 

  17. Y. Ito, M. Nogawa and R. Yoshida, Langmuir, 19, 9577 (2003).

    Article  Google Scholar 

  18. R. Yoshida, S. Onodera, T. Yamaguchi and E. Kokufuda, J. Phys. Chem. A, 103, 8573 (1999).

    Article  Google Scholar 

  19. R. Yoshida, G. Otoshi, T. Yamaguchi and E. Kokufuta, J. Phys. Chem. A, 105, 3667 (2001).

    Article  Google Scholar 

  20. K. Miyakawa, F. Sakamoto, R. Yoshida, T. Yamaguchi and E. Kokufuta, Phys. Rev. E, 62, 793 (2000).

    Article  ADS  Google Scholar 

  21. S. Tateyama, Y. Shibuta and R. Yoshida, J. Phys. Chem. B, 112, 1777 (2008).

    Article  Google Scholar 

  22. R. Yoshida, E. Kokufuta and T. Yamaguchi, CHAOS, 9, 260 (1999).

    Article  ADS  Google Scholar 

  23. R. Yoshida, T. Yamaguchi and E. Kokufuta, J. Intell. Mater. Syst. Structures, 10, 451 (1999).

    Article  Google Scholar 

  24. S. Sasaki, S. Koga, R. Yoshida and T. Yamaguchi, Langmuir, 19, 5595 (2003).

    Article  Google Scholar 

  25. R. Aoki, M. Enoki and R. Yoshida, Key Eng. Mater., 321–323, 1036 (2006).

    Article  Google Scholar 

  26. Y. Takeoka, M. Watanabe and R. Yoshida, J. Am. Chem. Soc., 125, 13320 (2003).

    Article  Google Scholar 

  27. R. Yoshida, K. Omata, K. Yamaura, M. Ebata, M. Tanaka and M. Takai, Lab Chip, 6, 1384 (2006).

    Article  Google Scholar 

  28. R. Yoshida, K. Omata, K. Yamaura, T. Sakai, Y. Hara, S. Maeda and S. Hashimoto, J. Photopolym. Sci. Tech., 19, 441 (2006).

    Article  Google Scholar 

  29. O. Tabata, H. Hirasawa, S. Aoki, R. Yoshida and E. Kokufuta, Sensors and Actuators A, 95, 234 (2002).

    Article  Google Scholar 

  30. O. Tabata, H. Kojima, T. Kasatani, Y. Isono and R. Yoshida, Proceedings of the International Conference on MEMS 2003, pp. 12–15 (2003).

    Google Scholar 

  31. R. Yoshida, T. Sakai, O. Tabata and T. Yamaguchi, Sci. Tech. Adv. Mater., 3, 95 (2002).

    Article  Google Scholar 

  32. S. Maeda, S. Hashimoto and R. Yoshida, Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO 2004), p. 313 (2004).

    Google Scholar 

  33. S. Maeda, Y. Hara, R. Yoshida and S. Hashimoto, Macromol. Rapid Commun., 29, 401 (2008).

    Article  Google Scholar 

  34. S. Maeda, Y. Hara, T. Sakai, R. Yoshida and S. Hashimoto, Adv. Mater., 19, 3480 (2007).

    Article  Google Scholar 

  35. R. Yoshida, T. Sakai, S. Ito and T. Yamaguchi, J. Am. Chem. Soc., 124, 8095 (2002).

    Article  Google Scholar 

  36. T. Sakai and R. Yoshida, Langmuir, 20, 1036 (2004).

    Article  Google Scholar 

  37. T. Sakai, Y. Hara and R. Yoshida, Macromol. Rapid Commun., 26, 1140 (2005).

    Article  Google Scholar 

  38. D. Suzuki, T. Sakai and R. Yoshida, Angew. Chem. Int. Ed., 47, 917 (2008).

    Article  Google Scholar 

  39. Y. Ito, Y. Hara, H. Uetsuka, H. Hasuda, H. Onishi, H. Arakawa, A. Ikai and R. Yoshida, J. Phys. Chem. B, 110, 5170 (2006).

    Article  Google Scholar 

  40. T. Sakai, Y. Takeoka, T. Saki and R. Yoshida, Langmuir, 23, 8651 (2007).

    Article  Google Scholar 

  41. Y. Hara and R. Yoshida, J. Phys. Chem. B, 109, 9451 (2005)

    Article  Google Scholar 

  42. Y. Hara and R. Yoshida, Langmuir, 21, 9773 (2005).

    Article  Google Scholar 

  43. Y. Hara, T. Sakai, S. Maeda, S. Hashimoto and R. Yoshida, J. Phys. Chem. B, 109, 23316 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Yoshida, R. (2009). Mechanochemical Instabilities in Active Gels. In: Borckmans, P., De Kepper, P., Khokhlov, A.R., Métens, S. (eds) Chemomechanical Instabilities in Responsive Materials. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2993-5_2

Download citation

Publish with us

Policies and ethics