Skip to main content

From Sustained Oscillations to Stationary Reaction-Diffusion Patterns

  • Conference paper

Abstract

A brief overview of the developments of oscillating chemical reactions and sus¬tained reaction diffusion patterns is presented. Focus is made on experimental tools and know-hows to study and create these nonequilibrium time and space chemical structures. Different specific examples are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ostwald, Z. Phys. Chem. 35, 204 (1900).

    Google Scholar 

  2. G. Bredig, J. Weinmayer, Z. Phys. Chem. 42, 601 (1903); G. Lippman, Ann. Phys. 149, 546 (1873).

    Google Scholar 

  3. E.S. Hedges, J.E. Myers, The Problem of Physico-chemical Periodicity, (London, Edwards Arnold & Co, 1926), p. 38.

    Google Scholar 

  4. W.C. Bray, J. Am. Chem. Soc. 43, 1262, (1921).

    Article  Google Scholar 

  5. P. Belousov, Sbornik Referatov po Radiatsionni Medditsine p. 145 (1958).

    Google Scholar 

  6. M.G.T. Fechner, Schweigger, J. Chem. Phys. 53, 129 (1828).

    Google Scholar 

  7. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, (Wiley, New York 1971).

    MATH  Google Scholar 

  8. R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94, 8648 (1972).

    Article  Google Scholar 

  9. R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974).

    Article  ADS  Google Scholar 

  10. P. Gray, S.K. Scott, Chem. Eng. Sci. 38, 29 (1983).

    Article  Google Scholar 

  11. P. Shen, R. Larter, Biophys. 67, 1414 (1994).

    Article  Google Scholar 

  12. D.M. Kern, C.-H. Kim, J. Am. Chem. Soc. 87, 5309 (1965).

    Article  Google Scholar 

  13. J.J. Tyson, J. Chem. Phys. 62, 1010 (1975).

    Article  ADS  Google Scholar 

  14. Y. Luo, I.R. Epstein, Adv. Chem. Phys., 79, 269 (1990).

    Article  Google Scholar 

  15. J.C. Roux, P. De Kepper, J. Boissonade, Phys. Lett. A 97, 168 (1983); M. Boukalouch, J. Boissonade, P. De Kepper, J. Chim. Phys. (Pa ri s) 84, 1353 (1987); Y. Luo, I.R. Epstein, J. Chem. Phys. 85, 5733 (1986).

    Google Scholar 

  16. A.K. Dutt, M. Menzinger, J. Phys. Chem. 94, 4867 (1990); M. Menzinger, A. Giraudi, J. Phys. Chem. 91, 4391 (1987).

    Article  Google Scholar 

  17. U. Franck, Angew. Chem. Int. Ed. 17, 1 (1978).

    Article  Google Scholar 

  18. P. De Kepper, A. Pacault, Compt. Rend. Acad. Sci. C286, 437 (1987).

    Google Scholar 

  19. M. Orbán, C. Dateo, P. De Kepper, I.R. Epstein, J. Am. Chem. Soc. 104, 5911 (1982).

    Article  Google Scholar 

  20. J. Boissonade, P. De Kepper, J. Phys. Chem. 84, 501 (1980).

    Article  Google Scholar 

  21. P. De Kepper, I.R. Epstein, K. Kustin, J. Am. Chem. Soc. 103, 2133 (1981).

    Article  Google Scholar 

  22. Gy. Rábai, M. Orbán, I.R. Epstein, Acc. Chem. Res. 23, 258 (1990).

    Article  Google Scholar 

  23. K. Kovacs, R.E. McIlwaine, S.K. Scott, A.F. Taylor, Phys. Chem. Chem. Phys. 9, 3711 (2007).

    Article  Google Scholar 

  24. Gy. Rábai, ACH Mod. Chem. 135, 381 (1998).

    Google Scholar 

  25. Gy. Rábai, M.T. Beck, K. Kustin, I.R. Epstein, J. Phys. Chem. 93, 2853 (1989).

    Article  Google Scholar 

  26. Zs. Virányi, I. Szalai, J. Boissonade, P. De Kepper, J. Phys. Chem. A 111, 8090 (2007).

    Google Scholar 

  27. H. Landolt, Ber. Dtsch. Chem. Ges. 19, 1316 (1886).

    Google Scholar 

  28. E.C. Edblom, Y. Luo, M. Orbán, K. Kustin, I.R. Epstein, J. Phys. Chem. 93, 2722 (1989).

    Article  Google Scholar 

  29. T.G. Szántó, Gy. Rábai, J. Phys. Chem. A109, 5398 (2005).

    Google Scholar 

  30. N. Okazaki, Gy. Rábai, I. Hanazaki, J. Phys. Chem. A103, 10915 (1999).

    Google Scholar 

  31. Gy. Rábai, I. Hanazaki, J. Phys. Chem. 100, 10615 (1996).

    Article  Google Scholar 

  32. K. Kurin-Csörgei, I.R. Epstein, M. Orbán, Nature 433, 139 (2005).

    Article  ADS  Google Scholar 

  33. K. Kurin-Csörgei, M. Orbán, I.R. Epstein, J. Phys. Chem. A110, 7588 (2006).

    Google Scholar 

  34. T. Liedl, M. Olapinski, F.C. Simmel, Angew. Chem. Int. Ed. 45, 5007 (2006).

    Article  Google Scholar 

  35. R. Yoshida, H. Ichijo, T. Hakuta, T. Yamaguchi, Macromol. Rapid Commun. 16, 305 (1995).

    Article  Google Scholar 

  36. V. Labrot, P. De Kepper, J. Boissonade, I. Szalai, F. Gauffre, J. Phys. Chem. B109, 21476 (2005).

    Google Scholar 

  37. C.J. Crook, A. Smith, R.A.L. Jones, A.J. Ryan, Phys. Chem. Chem. Phys. 4, 1367 (2002).

    Article  Google Scholar 

  38. I. Varga, I. Szalai, R. Meszaros, T. Gilányi, J. Phys. Chem. B110, 20297 (2006).

    Google Scholar 

  39. J. D'Hernoncourt, A. Zebib, A. De Wit, Chaos 17, 013109 (2007).

    Article  ADS  Google Scholar 

  40. A. Boiteux, B. Hess, Ber. Bunsenges. Phys. Chem. 84, 392 (1980).

    Google Scholar 

  41. K. Showalter, J. Chem. Phys. 73, 3735 (1980).

    Article  ADS  Google Scholar 

  42. M. Orbán, J. Am. Chem. Soc. 102, 4311 (1980).

    Article  Google Scholar 

  43. R.E. Liesegang, Naturwiss. Wochenschr. 11, 353 (1896).

    Google Scholar 

  44. H.K. Henisch, Periodic Precipitation (Pergamon Press, New York, 1991).

    Google Scholar 

  45. P.W. Voorhees, J. Stat. Phys. 38, 231 (1985).

    Article  ADS  Google Scholar 

  46. S.C. Müller, J. Ross, J. Phys. Chem. A107, 7997 (2003).

    Google Scholar 

  47. J.B. Keller, S.I. Rubinow, J. Chem. Phys. 74, 5000 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  48. I.T. Bensemann, M. Fialkowski, B.A. Grzybowski, J. Phys. Chem. B109, 2774 (2005).

    Google Scholar 

  49. R. Luther, Z. Elektrochem. 12, 596 (1906); K. Showalter, J.J. Tyson, J. Chem. Educ. 64, 742 (1987).

    Article  Google Scholar 

  50. A.N. Zaikin, A.M. Zhabotinsky, Nature 225, 535 (1970).

    Article  ADS  Google Scholar 

  51. A.T. Winfree, Science 175, 634 (1972); Scientific Am. 230, 82 (1974); Chaos 1, 303 (1991).

    Article  ADS  Google Scholar 

  52. Z. Nagy-Ungvarai, J. Ungvarai, S.C. Müller Chaos 3, 15 (1993).

    Article  ADS  Google Scholar 

  53. P. Foester, S.C. Müller, B. Hess, Science 241, 686 (1988).

    ADS  Google Scholar 

  54. C.T. Hamik, N. Manz, O. Steinbock, J. Phys. Chem. A105, 6144 (2001). N. Manz, S.C. Müller, O. Steinbock, J. Phys. Chem. A A104, 5895 (2000).

    Google Scholar 

  55. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64, 2953 (1990).

    Article  ADS  Google Scholar 

  56. A. Turing, Philos. Trans. R. S. London B327, 37 (1952).

    Article  ADS  Google Scholar 

  57. K.J. Lee, W.D. McCormick, Q. Ouyang, H.L. Swinney, Science 261, 192 (1993); K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney, Nature 369, 6477 (1994).

    Article  ADS  Google Scholar 

  58. J.A. Vastano, J.E. Pearson, W. Horsthemke, H.L. Swinney, J. Chem. Phys. 88, 6175 (1988).

    Article  ADS  Google Scholar 

  59. P. De Kepper, I.R. Epstein, K. Kustin, M. Orbán, J. Phys. Chem. 86, 170 (1982).

    Article  Google Scholar 

  60. E. Dulos, P.W. Davies, B. Rudovics, P. De Kepper, Physica D98, 53 (1996); B. Rudovics, E. Dulos, P. De Kepper, Physica Scripta T67, 43 (1996).

    Google Scholar 

  61. P. Borckmans, G. Dewel, A. De Wit, D. Walgraef, in Chemical Waves and Patterns, Eds. R. Kapral and K. Showalter (Kluwer, Dordrecht, 1995), p. 323.

    Google Scholar 

  62. V. Dufiet, J. Boissonade, Phys. Rev. E53, 4883 (1996).

    ADS  Google Scholar 

  63. A.S. Mikhailov, V.S. Zykov, Physica D52, 379 (1991).

    ADS  Google Scholar 

  64. M. Gomez-Gesteira, G. Fernandez-Garcia, A.P. Munuzuri, V. Perez-Munuzuri, V.I. Krinsky, C.F. Starmer, V. Perez-Villar, Physica D76, 359 (1994).

    ADS  Google Scholar 

  65. E. Dulos, J. Boissonade, P. De Kepper, in Nonlinear Waves Processes in Excitable Media, Eds. M. Markus and H.G. Othmer eds., p. 423 (Plenum Press, New York, 1991).

    Google Scholar 

  66. N. Kreisberg, W.D. Mc Cormic, H.L. Swinney, J. Chem. Phys. 91, 6532 (1989).

    Article  ADS  Google Scholar 

  67. H. Meinhardt, Models of Biological Pattern Formation (Academic Press, New York, 1982).

    Google Scholar 

  68. D. Walgraef, G. Dewel, P. Borckmans, Phys. Rev. A21, 337 (1980); P. Borckmans, A. De Wit, G. Dewel, Physica A188, 137 (1992).

    ADS  Google Scholar 

  69. B.A. Malomed, M.I. Tribeslskii, Sov. Phys. JETP 65, 305 (1987); L.M. Pismen, in Dynamics of Nonlinear Systems, Ed. V. Hlavacec (Gordon and Break, 1986).

    Google Scholar 

  70. V. Dufiet, J. Boissonade, Physica A188, 158 (1992).

    ADS  Google Scholar 

  71. A. De Wit, G. Dewel, P. Borckmans, D. Walgraef, Physica D61, 289 (1992).

    ADS  Google Scholar 

  72. H. Shoji, K. Yamada, D. Ueyama, T. Otha, Phys. Rev. E75, 046212 (2007).

    ADS  Google Scholar 

  73. A. De Wit, P. Borckmans, G. Dewel, Proc Natl Acad Sci USA 94, 12765 (1997).

    Article  ADS  Google Scholar 

  74. G. Nicolis I. Prigogine, Self Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    MATH  Google Scholar 

  75. P.M. Kulesa, G.C. Cruywagen, S.R. Lubkin, P.K. Maini, J.S. Sneyd, J.D. Murray, J. Biol. Syst. 3, 975 (1995).

    Article  Google Scholar 

  76. S. Kondo, Genes Cells 7, 535 (2002).

    Article  Google Scholar 

  77. I. Lengyel, I.R. Epstein, Science, 251, 650 (1990); Proc. Natl. Acad. Sci. USA, 89, 3977 (1992).

    Article  ADS  Google Scholar 

  78. J.E. Pearson, W. Bruno Chaos 2, 513 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. D.E. Strier, S. Ponce Dawson, PLoS ONE 2, 1053 (2007).

    Article  ADS  Google Scholar 

  80. I. Lengyel, Gy. Rábai, I.R. Epstein, J. Am. Chem. Soc. 112, 4606 (1990).

    Article  Google Scholar 

  81. R. Rudovics, E. Barillot, P.W. Davies, E. Dulos, J. Boissonade, P. De Kepper, J. Phys. Chem. A103, 1790 (1999).

    Google Scholar 

  82. S. Kádár, I. Lengyel, I.R. Epstein, J. Phys. Chem. 99, 4054 (1995).

    Article  Google Scholar 

  83. I. Lengyel, Gy. Rábai, I.R. Epstein, J. Am. Chem. Soc. 112, 4606 (1990).

    Article  Google Scholar 

  84. P. Blanchedeau, J. Boissonade, Phys. Rev. Lett. 81, 5007 (1998).

    Article  ADS  Google Scholar 

  85. P. Blanchedeau, J. Boissonade, P. De Kepper, Physica D147, 283 (2000).

    ADS  Google Scholar 

  86. I. Szalai, P. De Kepper, J. Phys. Chem. A108, 5315 (2004); D.E. Strier, P. De Kepper, J. Boissonade, J. Phys. Chem. A109, 1357 (2005).

    Google Scholar 

  87. I. Szalai, P. De Kepper, J. Phys. Chem. A112, 783 (2008); I. Szalai, P. De Kepper, Chaos, 18, 026105 (2008).

    Google Scholar 

  88. A. Hagberg, E. Meron, Chaos 4, 477 (1994); C. Elphick, A. Hagberg, E. Meron, Phys. Rev. E51, 3052 (1995).

    Article  ADS  Google Scholar 

  89. H. Ikeda, M. Mimura, Y. Nishiura, Nonlinear Anal. Theory Methods Appl. 13, 507 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  90. S. Ponce Dawson, M.V. DAngelo, J.E. Pearson, Phys. Lett. A265, 346 (2000).

    ADS  Google Scholar 

  91. E.C. Edblom, M. Orbán, I.R. Epstein, J. Am. Chem. Soc. 108, 2826 (1986); E.C. Edblom, L. Gyrgyi, M. Orbn, I.R. Epstein, J. Am. Chem. Soc. 109, 4876 (1987).

    Article  Google Scholar 

  92. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislaw, A. Shah, Phys. Rev. Lett. 45, 1636 (1980); S.R. Sandler, W. Karo, Polymer Synthesis, II(Academic, New York, 1977).

    Article  ADS  Google Scholar 

  93. J. Horváth, I. Szalai, P. De Kepper, Science 324, 772 (2009).

    Article  ADS  Google Scholar 

  94. Q. Ouyang, J.-M. Flesselles, Nature 379, 143 (1996); L.Q. Zhou, Q. Ouyang, J. Phys. Chem. A105, 112 (2001).

    Article  ADS  Google Scholar 

  95. A.L. Lin, A. Hagberg, A. Ardelea, M. Bertram, H.L. Swinney, E. Meron, Phys. Rev., E62, 3790 (2000); K. Martinez, A.L. Lin, R. Kharrazian, X. Sailer, H.L. Swinney, Physica, D 168–169, 1 (2002).

    ADS  Google Scholar 

  96. I. Berenstein, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, J. Phys. Chem. A 109, 5387 (2005).

    Google Scholar 

  97. I.R. Epstein, V. Vanag, Chaos, 15, 047510 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Kepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

De Kepper, P., Boissonade, J., Szalai, I. (2009). From Sustained Oscillations to Stationary Reaction-Diffusion Patterns. In: Borckmans, P., De Kepper, P., Khokhlov, A.R., Métens, S. (eds) Chemomechanical Instabilities in Responsive Materials. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2993-5_1

Download citation

Publish with us

Policies and ethics