Skip to main content

Influence of the Level of Protonation on the Geometry and the Electronic Structure of Emeraldine Oligomers

  • Chapter
Advances in the Theory of Atomic and Molecular Systems

Abstract

A number of studies prove the existence of magnetically active states in polyaniline and claim polaronic nature of conductivity, but the molecular structure of polarons and bipolarons with account of the solvent effect has not been exhausted. Alongside with conductivity, the optical and magnetic properties of the polymer related to its practical application could be rationalized by the elucidation of this problem. The purpose of this chapter is the assessment of the degree of protonation on the spatial and electronic structure of hydrated polyaniline oligomers. Neutral and protonated emeraldine octamers are modeled to this end. UHF, UBLYP, and UB3LYP with 6-31G* basis set were employed for optimization of the geometry in aqueous medium (PCM). Various structural parameters: bond lengths, valence, and torsion angles, were analyzed and compared. The distribution of Mulliken and NBO charge density and Mulliken atomic spin density was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Wang, E. Scherr, A. MacDiarmid, A. Epstein, Phys. Rev. B 45, 4190 (1992)

    Article  CAS  Google Scholar 

  2. K. Mizoguchi, M. Nechtschein, J. Travers, Synth. Metals 41, 113 (1991)

    Article  CAS  Google Scholar 

  3. J. Rouleau, J. Goyette, T. Bose, R. Singh, R. Tandon, Phys. Rev. B 52, 4801 (1995)

    Article  CAS  Google Scholar 

  4. (a) W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007); (b) G. Paasch, J. Electroanal. Chem. 600, 131 (2007); (c) F.M. Kelly, J.H. Johnston, T. Borrmann, M.J. Richardson, J. Nanosci. Nanotechnol. 8, 1965 (2008); (d) H.P. Huang, X.M. Feng, J.J. Zhu, Nanotechnology 19, 145607 (2008); (e) C.C. Wang, J.F. Song, H.M. Bao, Q.D. Shen, C.Z. Yang, Adv. Func, Mater. 18, 1299 (2008); (f) B.N. Grgur, V. Ristic, M.M. Gvozdenovic, M.D. Maksimovic, B.Z. Jugovic, J. Power Sources. 180, 635 (2008)

    Google Scholar 

  5. A.G. MacDiarmid, A.J. Epst?in, Faraday Discuss Chem. Soc. 88, 317 (1989)

    Article  CAS  Google Scholar 

  6. D.V. Petrov, A.S. Gomes, Cid B. de Araujo, J.M. de Souza, W.M. de Azevedo, J.V. de Melo, F.B. Diniz, Optics. Lett. 20, 554 (1995)

    Google Scholar 

  7. S. Chen, G. Hwang, Macromolecules 29, 3950 (1996)

    Article  CAS  Google Scholar 

  8. D. Bloor, Nature 335, 115 (1988)

    Article  Google Scholar 

  9. A.G. MacDiarmid, Synth. Metals 84, 27 (1997)

    Article  CAS  Google Scholar 

  10. G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Nature 357, 477 (1992)

    Article  CAS  Google Scholar 

  11. G.M. Tsivgoulis, J.M. Lehn, Adv. Mater. 9, 627 (1997)

    Article  CAS  Google Scholar 

  12. P. McManus, R. Cushman, S. Yang, J. Phys. Chem. 9, 744 (1987)

    Article  Google Scholar 

  13. (a) O. Aksimentyeva, O. Konopelnik, Mol. Cryst. Liq. Cryst. 427, 429 (2005); (b) D. Sarno, S. Manohar, A. MacDiarmid, Synth. Metals 148, 237 (2005); (c) C.G. Wu, S.S. Chang, J. Phys. Chem. B 109, 825 (2005)

    Google Scholar 

  14. M. Kulkarni, A. Viswanath, R. Marimuthu, T. Seth, Polym. Eng. Sci. 44, 1676 (2004)

    Article  CAS  Google Scholar 

  15. S. Sahoo, R. Nagarajan, S. Roy, L.A. Samuelson, J. Kumar, A.L. Cholli, Macromolecules 37, 4130 (2004)

    Article  CAS  Google Scholar 

  16. M.C. Bernard, A. Hugot-Le Goff, Electrochim. Acta 52, 595 (2006)

    Article  CAS  Google Scholar 

  17. V. Krinichnyi, S. Chemerisov, Y. Lebedev, Phys. Rev. B 55, 16233 (1997)

    Article  CAS  Google Scholar 

  18. A. Kon’kin, V. Shtyrlin, R. Garipov, A. Aganov, A. Zakharov, V. Krinichnyi, P. Adams, A. Monkman, Phys. Rev. B 66, 075203 (2002)

    Article  Google Scholar 

  19. A. Petr, A. Neudeck, L. Dunsch, Chem. Phys. Lett. 401, 130 (2005)

    Article  CAS  Google Scholar 

  20. (a) L. Ge, S. Li, T.F. George, X. Sun, Phys. Lett. A 372, 3375 (2008); (b) Y. Harima, F. Ogawa, R. Patil, X. Jiang, Electrochim. Acta 52, 3615 (2007)

    Google Scholar 

  21. P.K. Kahol, A. Raghunathan, B.J. McCormick, Synth. Metals 140, 261 (2004)

    Article  CAS  Google Scholar 

  22. (a) V. Prigodin, A. Samukhin, A. Epstein, Synth. Metals 141, 155 (2004); (b) J. Joo, S. Long, J. Pouget, E.J. Oh, A. MacDiarmid, A. Epstein, Phys. Rev. B 57, 9567 (1998); (c) R. Kohlman, A. Zibold, D. Tanner, G. Ihas, T. Ishiguro, Y. Min, A. MacDiarmid, A. Epstein, Phys. Rev. Lett. 78, 3915 (1997); (d) M. Angelopoulos, A. Ray, A. MacDiarmid, A. Epstein, Synth. Metals 21, 21 (1987)

    Google Scholar 

  23. Z.T. Oliveira Jr., M. dos Santos, Chem. Phys. 260, 95 (2000)

    Article  Google Scholar 

  24. J.P. Foreman, A.P. Monkman, J. Phys. Chem. A 107, 7604 (2003)

    Article  CAS  Google Scholar 

  25. (a) R.H. Baughman, J.F. Wolf, H. Eckhardt, L.W. Shaklette, Synth. Metals 25, 121 (1989); (b) L.W. Shaklette, J.F. Wolf, S. Gould, R.H. Baughman, J. Chem. Phys. 88, 3955 (1988); (c) M.P. Lima, G.M. Silva, J. Molec. Struct THEOCHEM 852, 15 (2008); (d) A. Varela-Àlvarez, J.A. Sordo, J. Chem. Phys. 128, 174706 (2008)

    Google Scholar 

  26. M. Schreiber, K. Tenelsenb, T. Vojta, J. Luminescence 66–67, 521 (1996)

    Google Scholar 

  27. (a) J.L. Bredas, C. Quattrocchi, J. Libert, A.G. MacDiarmid, J.M. Ginder, A.J. Epstein, Phys. Rev. B 44, 6002 (1991); (b) A.G. MacDiarmid, A.J. Epstein, Synth. Metals 69, 85 (1995); (c) S. Stafstroem, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid, Phys. Rev. Lett. 59, 1464 (1987)

    Google Scholar 

  28. D. Djurado, M. Bee, M. Gonzalez, C. Mondelli, B. Dufour, P. Rannou, A. Pron, J.P. Travers Chem. Phys. 292, 355 (2003)

    CAS  Google Scholar 

  29. (a) A. Kulikov, A. Komissarova, A. Ryabenko, L. Fokeeva, I. Shunina, O. Belonogova, Russ. Chem. Bull. 12, 2794 (2005); (b) A. Kulikov, V. Bogatyrenko, O. Belonogova, L. Fokeeva, A. Lebedev, T. Echmaeva, I. Shunina, Russ. Chem. Bull. 51, 2216 (2002)

    Google Scholar 

  30. B. Champagne, M. Spassova, Phys. Chem. Chem. Phys. 6, 3167 (2004)

    Article  CAS  Google Scholar 

  31. B. Grossmann, J. Heinze, T. Moll, C. Palivan, C. Ivan, G. Gescheidt, J. Phys. Chem. B 108, 4669 (2004)

    Article  CAS  Google Scholar 

  32. (a) C. Aleman, C.A. Ferreira, J. Torras, A. Meneguzzi, M. Canales, M.A.S. Rodrigues, J. Casanovas, Polymer 49, 5169 (2008); (b) S.L. Lim, K.L. Tan, E.T. Kang, W.S. Chin, J. Chem. Phys. 112, 10648 (2000)

    Google Scholar 

  33. J. Libert, J.L. Bredas, Synth. Metals 69, 121 (1995)

    Article  CAS  Google Scholar 

  34. G. Yang, W. Hou, X. Feng, X. Jiang, J. Guo, Int. J. Quant. Chem. 108, 1156 (2008)

    Google Scholar 

  35. A. Pecchia, A. Di Carlo, Rep. Prog. Phys. 67, 1497 (2004)

    Article  CAS  Google Scholar 

  36. E.A.A. Noh, J. Zhang, Chem. Phys. 330, 82 (2006)

    Article  CAS  Google Scholar 

  37. (a) H. Zhekova, A. Tadjer, A. Ivanova, J. Petrova, N. Gospodinova, Int. J. Quant. Chem. 107, 1688 (2007); (b) N. Gospodinova, S. Dorey, A. Ivanova, H. Zhekova, A. Tadjer, Int. J. Polym. Anal. Charact. 12, 251 (2007); (c) A. Ivanova, A. Tadjer, N. Gospodinova, J. Phys. Chem. B, 110, 2555 (2006); (d) A. Ivanova, G. Madjarova, A. Tadjer, N. Gospodinova, Int. J. Quant. Chem. 106, 1383 (2006)

    Google Scholar 

  38. (a) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005); (b) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117, (1981)

    Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, revision D.01 (Gaussian Inc., Pittsburgh PA, 2004)

    Google Scholar 

  40. (a) Y. Yan, Z. Yu, Y.W. Huang, W.X. Yuan, Z.X. Wei, Adv. Mater. 19, 3353 (2007); (b) B. Jia, T, Hino, N. Kuramoto, Reactive Func. Polym. 67, 836 (2007); (c) J. Li, L.H. Zhu, W. Luo, Y. Liu, H.Q. Tang, J. Phys. Chem. C 111, 8383 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Petrova, J., Romanova, J., Madjarova, G., Ivanova, A., Tadjer, A., Gospodinova, N. (2009). Influence of the Level of Protonation on the Geometry and the Electronic Structure of Emeraldine Oligomers. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2985-0_11

Download citation

Publish with us

Policies and ethics