Skip to main content

Heat Shock Proteins Are Mediators of Bacterial-Host Interactions

  • Chapter
  • First Online:
  • 697 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 4))

Abstract

A new paradigm of bacterial interactions with humans is predicated on the foundation that Homo sapiens are host to more than 1,000 bacterial species – the normal bacterial microbiota. The assumption is that such colonisation must create an enormous amount of signalling between our resident bacteria and our own cells. Exogenous and endogenous bacterial pathogens must contribute to this signalling and most of our information comes from a study of pathogenic bacteria. It is now emerging that molecular chaperones, and cell stress proteins generally, form part of this communications network. Indeed, they may form an important part, as it is likely that mutual stress responses are involved in controlling our interactions with bacteria and their response to us. This chapter provides an overview of the recent literature emerging on the role of stress proteins in bacteria–host interactions

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Woese, C.R. (1987) Bacterial evolution. Microbial Rev 51, 221–271.

    CAS  Google Scholar 

  2. Woese, C.R. (2002) A new biology for a new century. Microbiol Mol Biol Rev 68, 173–186.

    Article  CAS  Google Scholar 

  3. Whitman, W.B., Colman, D.C., Wiebe, W.J. (1998) Prokaryotes, the unseen majority. Proc Natl Acad Sci USA 95, 6578–6583.

    Article  PubMed  CAS  Google Scholar 

  4. McFall-Ngai, M. (2005) The interface of microbiology and immunology: a comparative analysis of the animal kingdom. In The Influence of Cooperative Bacteria on Animal Host Biology, M. McFall-Ngai, B. Henderson, and E.G. Ruby, eds. Cambridge University Press, New York, pp. 35–56.

    Google Scholar 

  5. Wilson, M. (2005) Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. Cambridge University Press, New York.

    Google Scholar 

  6. Tannock, G.W. (1995) Normal Microflora. Chapman and Hall, London.

    Google Scholar 

  7. Wilson, M. McNab, R., and Henderson, B. (2002) Bacterial Disease Mechanisms. Cambridge University Press, Cambridge.

    Google Scholar 

  8. Henderson, B., Wilson, M., McNab, R., and Lax, A.J. (1999) Cellular Microbiology. Wiley, Chichester.

    Google Scholar 

  9. Koropatnick, T.A., Engle, J.T., Apicella, M.A., Stabb, E.V., Goldman, W.E., and McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188.

    Article  PubMed  CAS  Google Scholar 

  10. Kregel, K.C. (2003) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92, 2177–2186.

    Google Scholar 

  11. Ellis, R.J. (2005) Chaperone function: the orthodox view. In Molecular Chaperones and Cell Signalling, B. Henderson, and A.G. Pockley, eds. Cambridge University Press, New York, pp. 3–21.

    Chapter  Google Scholar 

  12. Jeffery, C.J. (2005) Moonlighting proteins: proteins with multiple functions. In Molecular Chaperones and Cell Signalling, B. Henderson, and A.G. Pockley, eds. Cambridge University Press, New York, pp. 61–77.

    Chapter  Google Scholar 

  13. Du, Y., Lenz, J., and Arvidson, C.G. (2005) Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect Immun 73, 4834–4845.

    Article  PubMed  CAS  Google Scholar 

  14. Hosogi, Y., and Duncan, M.J. (2005) Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect Immun 73, 2327–2335.

    Article  PubMed  CAS  Google Scholar 

  15. Sweier, D., Combs, G.A., Shelburne, C.E., Fenno, J.C., and Lopatin, D.E. (2003) Construction and characterisation of a Porphyromonas gingivalis hptG disruption mutant. FEMS Microbiol Lett 225, 101–106.

    Article  PubMed  CAS  Google Scholar 

  16. Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Efron, B., Butcher, P.D., Nathan, C., and Schoolnik, G.K. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198, 693–704.

    Article  PubMed  CAS  Google Scholar 

  17. Malago, J.J., Koninkx, J.F., Ovelgonne, H.H., van Asten, F.J., Swennenhuis, J.F., and van Dijk, J.E. (2003) Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperones 8, 194–203.

    Article  PubMed  CAS  Google Scholar 

  18. Fincato, G., Polentarutti, N., Sica, A., Mantovani, A., and Colotta, F. (1991) Expression of a heat-inducible gene of the HSP70 family in human myelomonocytic cells: regulation by bacterial products and cytokines. Blood 77, 579–586.

    PubMed  CAS  Google Scholar 

  19. Kojima, K., Musch, M.W., Ropeleski, M.J., Boone, D.L., Ma, A., and Chang, E.B. (2004) Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation. Am J Physiol Gastrointest Liver Physiol 286, G645–G652.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Y.H., Takahashi, K., Jiang, G.Z., Zhang, X.M., Kawai, M., Fukada, M., and Yokochi, T. (1994) In vivo production of heat shock protein in mouse peritoneal macrophages by administration of lipopolysaccharide. Infect Immun 62, 4140–4144.

    PubMed  CAS  Google Scholar 

  21. Heine, H., Delude, R.L., Monks, B.G., Espevik, T., and Golenbock, D.T. (1999) Bacterial lipopolysaccharide induces expression of the stress response genes hop and H411. J Biol Chem 274, 21049–21055.

    Article  PubMed  CAS  Google Scholar 

  22. Musch, M.W., Petrof, E.O., Kojima, K., Ren, H., McKay, D.M., and Chang, E.B. (2004) Bacterial superantigen-treated intestinal epithelial cells upregulate heat shock proteins 25 and 72 and are resistant to oxidant cytotoxicity. Infect Immun 72, 3187–3194.

    Article  PubMed  CAS  Google Scholar 

  23. Wong, H.R., Mannix, R.J., Rusnak, J.M., Boota, A., Zar, H., Watkins, S.C., Lazo, J.S., and Pitt, B.R. (1996) The heat-shock response attenuates lipopolysaccharide-mediated apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 15, 745–751.

    PubMed  CAS  Google Scholar 

  24. Hotchkiss, R., Nunnally, I., Lindquist, S., Taulien, J., Perdrizet, G., and Karl, I. (1993) Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 265, R1447–R1457.

    PubMed  CAS  Google Scholar 

  25. Byrd, C.A., Bornmann, W., Erdjument-Bromage, H., Tempst, P., Pavletich, N., Rosen, N., Nathan, C.F., and Ding, A. (1999) Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 96, 5645–5650.

    Article  PubMed  CAS  Google Scholar 

  26. Triantafilou, K., Triantafilou, M., and Dedrick, R.L. (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2, 338–345.

    Article  PubMed  CAS  Google Scholar 

  27. Triantafilou, K., Triantafilou, M., Ladha, S., Mackie, A., Dedrick, R.L., Fernandez, N., and Cherry, R. (2001) Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. J Cell Sci 114, 2535–2545.

    PubMed  CAS  Google Scholar 

  28. Jin, S., Song, Y.C., Emili, A., Sherman, P.M., and Chan, V.L. (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and P38 MAP kinases in epithelial cells. Cell Microbiol 5, 165–174.

    Article  PubMed  CAS  Google Scholar 

  29. Yeo, M., Park, H.K., Lee, K.J., Kim, J.H., Cho, S.W., and Hanm, K.B. (2004) Blockage of HSP 90 modulates Helicobacter pylori-induced IL-8 productions through the inactivation of transcriptional factors of AP-1 and NF-κB. Biochem Biophys Res Commun 320, 816–824.

    Article  PubMed  CAS  Google Scholar 

  30. Prasadarao, N.V., Srivastava, P.K., Rudrabhatla, R.S., Kim, K.S., Huang, S., and Sukamaran, S.K. (2003) Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue. Infect Immun 71, 16980–16988.

    Article  CAS  Google Scholar 

  31. Dziewanowska, K., Carson, A.R., Patti, J.M., Deobald, C.F., Bayles, K.W., and Bohach, G.A. (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalisation by epithelial cells. Infect Immun 68, 6321–6328.

    Article  PubMed  CAS  Google Scholar 

  32. Wampler, J.L., Kim, K-P., Jaradat, Z., and Bhunia, A.K. (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72, 931–936.

    Article  PubMed  CAS  Google Scholar 

  33. Kim, K-P., Jagadeesan, B., Burkholder, K.M., Jaradat, Z.W., Wampler, J.L., Lathrop, A.A., Morgan, M.T., and Bhunia, A.K. (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256, 324–332.

    Article  PubMed  CAS  Google Scholar 

  34. Belles, C., Kuhl, A., Nosheny, R., and Carding, S.R. (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67, 4191–4200.

    PubMed  CAS  Google Scholar 

  35. Shamaei-Tousi, A., Halcox, J.C., Henderson, B. (2007) Stressing the obvious? Cell stress and cell stress proteins in cardiovascular disease. Cardiovascular Res 74, 19–28.

    Article  CAS  Google Scholar 

  36. Conant, C.G., Stephens, R.S. (2007) Chlamydia attachment to mammalian cells requires protein disulphide isomerase. Cell Microbiol 9, 222–232.

    Article  PubMed  CAS  Google Scholar 

  37. Jindadamrongwech, S., Thepparit, C., and Smith, D.R. (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149, 915–927.

    Article  PubMed  CAS  Google Scholar 

  38. Reyes-del Valle, J., Chavez-Salinas, S., Medina, F., and Del Angel, R.M. (2005) Heat shock protein 90 and heat shock protein 70 are components of Dengue virus receptor complex in human cells. J Virol 79, 4557–4567.

    Article  PubMed  CAS  Google Scholar 

  39. Hightower, L.E., and Guidon, P.T. (1989) Selected release from cultured mammalian cells of heat shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138, 257–266.

    Article  PubMed  CAS  Google Scholar 

  40. Lancaster, G.I., and Febbraio, M.A. (2005) Exosome-dependent trafficking of HSP70. J Biol Chem 280, 23349–23355.

    Article  PubMed  CAS  Google Scholar 

  41. Mambula, S.S., and Calderwood, S.K. (2006) Heat shock protein 70 is secreted from tumor cells by a non-classical pathway involving lysosomal endosomes. J Immunol 177, 7849–7857.

    PubMed  CAS  Google Scholar 

  42. Morton, H., Rolfe, B., and Clunie, G.J. (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 19, 394–397.

    Article  Google Scholar 

  43. Noonan, F.P., Halliday, W.J., Morton, H., and Clunie, G.J. (1979) Early pregnancy factor is immunosuppressive. Nature 278, 649–651.

    Article  PubMed  CAS  Google Scholar 

  44. Cavanagh, A.C., and Morton, H. (1994) The purification of early pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222, 551–560.

    Article  PubMed  CAS  Google Scholar 

  45. Frostegard, J., and Pockley, A.G. (2005) Heat shock protein release and naturally occurring exogenous heat shock proteins. In Molecular Chaperones and Cell Signalling, B. Henderson, and A.G. Pockley, eds. Cambridge University Press, New York, pp. 195–219.

    Chapter  Google Scholar 

  46. Pockley, A.G., and Multhoff, G. (2008) Cell stress proteins in extracellular fluids: friend or foe? In The Biology of Extracellular Molecular Chaperones, B. Henderson, J.R. Ellis, and A.G. Pockley, eds. Novartis Foundation Symposium Wiley: Chichester 291, pp. 86–100.

    Chapter  Google Scholar 

  47. Shamaei-Tousi, A., D’Aiuto, F., Nibali, L., Steptoe, A., Coates, A.R.M., Parker, M., Donos, N., and Henderson, B. (2007) Differential regulation of circulating levels of molecular chaperones in patients undergoinf treatment for periodontal disease. PLoS ONE 2, e1198.

    Article  PubMed  CAS  Google Scholar 

  48. Panayi, G.S., Corrigall, V.M., and Henderson, B. (2004) Stress cytokines: pivotal proteins in immune regulatory networks. Curr Opin Immunol 16, 531–534.

    Article  PubMed  CAS  Google Scholar 

  49. Thriault, J.R., Adachi, H., and Calderwood, S.K. (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177. 8604–8611.

    PubMed  CAS  Google Scholar 

  50. Calderwood, S.K., Mambula, S.S., Gray, P.J., Thriault, J.R. (2007) Extracellular heat shock proteins and cell signalling. FEBS Letts 581, 3689–3694.

    Article  CAS  Google Scholar 

  51. Zanin-Zhorov, A., Nussbaum, G., Franitza, S., Cohen, I.R., and Lider, O. (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17, 1567–1569.

    PubMed  CAS  Google Scholar 

  52. Henderson, B., Allan, E., and Coates, A.R.M. (2006) Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 74, 3693–3706.

    Article  PubMed  CAS  Google Scholar 

  53. Noel, W., Raes, G., Hassanzadeh, G., De Baetselier, P., and Beschin, A. (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20, 126–133.

    Article  PubMed  CAS  Google Scholar 

  54. Wilson, M. (2002) Bacterial Adhesion to Host Tissues. Cambridge University Press, New York.

    Book  Google Scholar 

  55. Gatlin, C.L., Pieper, R., Huang, S.T., Mongodin, E., Gebregeorgis, E., Parmar, P.P., Clark, D.J., Alami, H., Papazisi, L., Fleischmann, R.D., Gill, S.R., and Peterson, S.N. (2006) Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics 6, 1530–1549.

    Article  PubMed  CAS  Google Scholar 

  56. Pancholi, V., and Chhatwal, G.S. (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293, 391–401.

    Article  PubMed  CAS  Google Scholar 

  57. Boëlm, G., Jinm, H., and Pancholi, V. (2005) Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun 73, 6237–6248.

    Article  CAS  Google Scholar 

  58. Török, Z., Horváth, I., Goloubinoff, P., Kovács, E., Glatz, A., Balogh, G., and Vígh, L. (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA 94, 2192–2197.

    Article  PubMed  Google Scholar 

  59. De Bruyn, J., Soetaert, K., Buyssens, P., Calonne, I., De Coene, J.L., Gallet, X., Brasseur, R., Wattiez, R., Falmagne, P., Montrozier, H., Lanéelle, M.A., and Daffé, M. (2000) Evidence for specific and non-covalent binding of lipids to natural and recombinant Mycobacterium bovis BCG hsp60 proteins, and to the Escherichia coli homologue GroEL. Microbiology 146, 1513–1524.

    Google Scholar 

  60. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108.

    Article  PubMed  CAS  Google Scholar 

  61. Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R. Jr., and Hatfull, G.F. (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861–873.

    Article  PubMed  CAS  Google Scholar 

  62. Friedland, J.S., Shattock, R., Remick, D.G., and Griffin, G.E. (1993) Mycobacterial 65-kDa heat shock protein induces release of proinflammatory cytokines from human monocytic cells. Clin Exp Immunol 91, 58–62.

    Article  PubMed  CAS  Google Scholar 

  63. Kirby, A.C., Meghji, S., Nair, S.P., White, P., Reddi, K., Nishihara, T., Nakashima, K., Willis, A.C., Sim, R., Wilson, M., and Henderson, B. (1995) The potent bone resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest 96, 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  64. Reddi, K., Meghji, S., Nair, S.P., Arnett, T.R., Miller, A.D., Preuss, M., Wilson, M., Henderson, B., and Hill, P. (1998) The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation. J Bone Miner Res 13, 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  65. Meghji, S., White, P.A., Nair, S.P., Reddi, K., Heron, K., Henderson, B., Zaliani, A., Fossati, G., Mascagni, P., Hunt, J.F., Roberts, M., and Coates, A.R.M. (1997) Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott’s disease. J Exp Med 186, 1241–1246.

    Article  PubMed  CAS  Google Scholar 

  66. Winrow, VR., Mesher, J., Meghji, S., Morris, C.J., Maguire, M., Fox, S., Coates, A.R.M., Tormay, P., Blake, D.R., and Henderson, B. (2008) The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts. Cell Microbiol 10, 2091–104.

    Article  PubMed  CAS  Google Scholar 

  67. Riffo-Vasquez, Y., Spina, D., Page, C., Desel, C., Whelan, M., Tormay, P., Singh, M., Henderson, B., and Coates, A.R.M. (2004) Differential effects of Mycobacterium tuberculosis chaperonins on bronchial eosinophilia and hyperresponsiveness in a murine model of allergic inflammation. Clin Exp Allergy 34, 712–719.

    Article  PubMed  CAS  Google Scholar 

  68. Hu, Y-M., Henderson, B., Lund, P.A., Tormay, P., Ahmed, M.T., Gurcha, S.S., Gurdyal, S., Besra, G.S., and Coates, ARM (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76, 1535–1546.

    Article  PubMed  CAS  Google Scholar 

  69. Lewthwaite, J., George, R., Lund, P.A., Poole, S., Tormay, P., Sharp, L., Coates, A.R.M., and Henderson, B. (2002) Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interactions with cell surface CD14. Cell Stress Chaperones 7, 130–136.

    Article  PubMed  CAS  Google Scholar 

  70. Tormay, P., Coates, A.R.M., and Henderson, B. (2005) Structure:function relationships of Mycobacterium tuberculosis chaperonin 60 proteins: the cell signalling activity of M. tuberculosis chaperonin 60.1 resides in the equatorial domain. J Biol Chem 280, 14272–14277.

    Article  PubMed  CAS  Google Scholar 

  71. Gobert, A.P., Bambou, J.C., Werts, C., Balloy, V., Chignard, M., Moran, A.P., and Ferero, R.L. (2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production via a Toll-like receptor (TLR)-2, TLR-4 and myeloid-differentiation factor 88-independent mechanism. J Biol Chem 279, 245–250.

    Article  PubMed  Google Scholar 

  72. Henderson, B., Mesher, J. (2007) The search for the chaperonin 60 receptor. Methods 43, 223–228.

    Article  PubMed  CAS  Google Scholar 

  73. Equils, O., Lu, D., Gatter, M., Witkin, S.S., Bertolotto, C., Arditi, M., McGregor, J.A., Simmons, C.F., and Hobel, C.J. (2006) Chlamydia heat shock protein 60 induces trophoblast apoptosis through TLR4. J Immunol 177, 1257–1263.

    PubMed  CAS  Google Scholar 

  74. Yoshida, N., Oeda, K., Watanabe, E., Mikami, T., Fukita, Y., Nishimura, K., Komai, K., and Matsuda, K. (2001) Chaperonin turned insect neurotoxin. Nature 411, 44.

    Article  PubMed  CAS  Google Scholar 

  75. Banerjee, S., Hess, D., Majumder, P., Roy, D., and Das, S. (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J Biol Chem 279, 23782–23789.

    Article  PubMed  CAS  Google Scholar 

  76. Fares, M.A., Moya, A., and Barrio, E. (2004) GroEL and the maintenance of bacterial endosymbiosis. Trends Genet 20, 413–416.

    Article  PubMed  CAS  Google Scholar 

  77. Ramsay, N. (1988) A mutant in a major heat shock protein of Escherichia coli continues to show inducible thermotolerance. Mol Gen Genet 211, 332–334.

    Article  PubMed  CAS  Google Scholar 

  78. Kohler, S., Teyssier, J., Cloekkaert, A., Rouot, B., and Liautard, J.P. (1996) Participation of the molecular chaperones DnaK in intracellular growth of Brucella suis within U937-derived phagocytes. Mol Microbiol 20, 701–712.

    Article  PubMed  CAS  Google Scholar 

  79. Konkel, M.E., Kim, B.J., Klena, J.D., Young, C.R., and Ziprin, R. (1998) Characterisation of the thermal stress response of Campylobacter jejuni. Infect Immun 66, 3666–3672.

    PubMed  CAS  Google Scholar 

  80. Takaya, A., Tomayasu, T., Matsui, H., and Yamamoto, T. (2004) The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect Immun 72, 1364–1373.

    Article  PubMed  CAS  Google Scholar 

  81. Wang, Y., Kelly, C.G., Karttunen, J.T., Whittall, T., Lehner, P.J., Duncan, L., MacAry, P., Younson, J.S., Singh, M., Oehlmann, W., Cheng, G., Bergmeier, L., and Lehner, T. (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15, 971–983.

    Article  PubMed  CAS  Google Scholar 

  82. Wang, Y., Kelly, C.G., Singh, M., McGowan, E.G., Carrara, A.S., Bergmeier, L.A., and Lehner, T. (2002). Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169, 2422–2429.

    PubMed  CAS  Google Scholar 

  83. Wang, Y., Whittall, T., McGowan, E., Younson, J., Kelly, C., Bergmeier, L.A., Singh, M., and Lehner, T. (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174, 3306–3316.

    PubMed  CAS  Google Scholar 

  84. Whittall, T., Wang, Y., Younson, J., Kelly, C., Bergmeier, L., Peters, B., Singh, M., and Lehner, T. (2006) Interaction between the CCR5 chemokine receptors and microbial HSP70. Eur J Immunol 36, 2304–2314.

    Article  PubMed  CAS  Google Scholar 

  85. Detanico, T., Rodrigues, L., Sabritto, A.C., Keisermann, M., Bauer, M.E., Zwickey, H., and Bonorino, C. (2004). Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol 135, 336–342.

    Article  PubMed  CAS  Google Scholar 

  86. Fanghanel, J., and Fischer, G. (2004) Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9, 3453–3478.

    Article  PubMed  Google Scholar 

  87. Cianciotto, N.P., Eisenstein, B.I., Mody, C.H., Toews, G.B., and Engleberg, N.C. (1989) A Legionella pneumophila gene encoding a species-specific surface protein potentiates inititation of intracellular infection. Infect Immun 57, 1255–1262.

    PubMed  CAS  Google Scholar 

  88. Cianciotto, N.P., and Fields, B.S. (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci USA 89, 5188–5191.

    Article  PubMed  CAS  Google Scholar 

  89. Fischer, G., Bang, H., Ludwig, B., Mann, K., and Hacker, J. (1992) Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPIases) activity. Mol Microbiol 6, 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  90. Lundemose, A.G., Birkelund, S., Fey, S.J., Larsen, P.M., and Christiansen, G. (1991) Chlamydia trachomatis contains a protein similar to the Legionella pneumophila mip gene product. Mol Microbiol 5, 109–115.

    Article  PubMed  CAS  Google Scholar 

  91. Fischer, G., Rappioli, R., and Pizza, M. (2005) Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol Microbiol 58, 669–681.

    Article  PubMed  CAS  Google Scholar 

  92. Reddy, S.P., Rasmussen, W.G., and Baseman, J.B. (1996) Correlations between Mycoplasma pneumoniae sensitivity to cyclosporin A and cyclophilin-mediated regulation of mycoplasma cytadherence. Microb Pathog 20, 155–169.

    Article  PubMed  CAS  Google Scholar 

  93. Huang, G.C., Li, Z.Y., Zhou, J.M., and Fischer, G. (2000) Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor. Protein Sci 9, 1254–1261.

    Article  PubMed  CAS  Google Scholar 

  94. Kramer, G., Patzelt, H., Rauch, T., Kurz, T.A., Vorderwulbecke, S., Bakau, B., and Deuerling, E. (2004) Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem 279, 14165–14170.

    Article  PubMed  CAS  Google Scholar 

  95. Wen, Z.T., Suntharaligham, P., Cvitkovitch, D.C., and Burne, R.A. (2005) Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73, 219–225.

    Article  PubMed  CAS  Google Scholar 

  96. Lyon, W.R., Gibson, C.M., and Caparon, M.G. (1998) A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine protease of Streptococcus pyogenes. EMBO J 17, 6263–6275.

    Article  PubMed  CAS  Google Scholar 

  97. Lyon, W.R., and Caparon, M.G. (2003) Trigger factor-mediated prolyl isomerisation influences maturation of the Streptococcus pyogenes cysteine protease. J Bacteriol 185, 3661–3667.

    Article  PubMed  CAS  Google Scholar 

  98. Jones, N.L., Shannon, P.T., Cut, E., Yeger, H., and Sherman, P.M. (1997) Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am J Pathol 151, 1695–1703.

    PubMed  CAS  Google Scholar 

  99. Kim, N., Weeks, D.L., Shin, J.M., Scott, D.R., Young, M.K., and Sachs, G. (2002) Proteins released by Helicobacter pylori in vitro. J Bacteriol 184, 6155–6162.

    Article  PubMed  CAS  Google Scholar 

  100. Atanassov, C., Pezennec, L., d’Alayer, J., Grollier, G., Picard, B., and Fauchere, J-L. (2002) Novel antigens of Helicobacter pylori correspond to ulcer-related antibody. J Clin Microbiol 40, 547–552.

    Article  PubMed  CAS  Google Scholar 

  101. Basak, C., Pathak, S.K., Bhattacharyya, A., Pathak, S., Basu, J., and Kundu, M. (2005) The secreted peptidyl prolyl cis,trans-isomerase HP0175 of Helicobacter pylori induces apoptosis of gastric epithelial cells in a TLR4- and apoptosis signal-regulating kinase 1-dependent manner. J Immunol 174, 5672–5680.

    PubMed  CAS  Google Scholar 

  102. Pathak, S.K., Basu, S., Bhattacharyya, A., Pathak, S., Banerjee, A., Basu, J., and Kundu, M. (2006) TLR4-dependent NF-κB activation and mitogen- and stress-activated protein kinase 1-triggered phosphorylation events are central to Helicobacter pylori peptidyl prolyl cis-, trans-isomerase (HP0175)-mediated induction of IL-6 release from macrophages. J Immunol 177, 7950–7958.

    PubMed  CAS  Google Scholar 

  103. Emelyanov, V.V., and Loukianov, E.V. (2004) A 29.5 kDa heat-modifiable major outer membrane protein of Rickettsia prowazekii, putative virulence factor, is a peptidyl-prolyl cis/trans isomerase. IUBMB Life 56, 215–219.

    Article  PubMed  CAS  Google Scholar 

  104. Horne, S.M., Kottom, T.J., Nolan, L.K., and Young, K.D. (1997) Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infect Immun 65, 806–810.

    PubMed  CAS  Google Scholar 

  105. Humphreys, S., Rowley, G., Stevenson, A., Kenyon, W.J., Spector, M.P., and Roberts, M. (2003) Role of periplasmic peptidylprolyl isomerases in Salmonella enterica serovar typhimurium virulence. Infect Immun 71, 5386–5388.

    Article  PubMed  CAS  Google Scholar 

  106. Dougan, D.A., Mogk, A., Zeth, K., Turgay, K., and Bakau, B. (2002) AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Letts 529, 6–10.

    Article  CAS  Google Scholar 

  107. Frees, D., Savijoki, K., Varmanen, P., and Ingmer, H. (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63, 1285–1295.

    Article  PubMed  CAS  Google Scholar 

  108. Kruger, E., Msadek, T., Ohlmeier, S., and Hecker, M. (1997) The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143, 1309–1316.

    Article  PubMed  Google Scholar 

  109. Msadek, T., Kunst, F., and Rapoport, G. (1994) MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc Natl Acad Sci USA 91, 5788–5782.

    Google Scholar 

  110. Nanamiya, H., Ohashi, Y., Asai, K., Moriya, S., Ogasawara, N., Fujita, M., Sadaie, Y., and Kawamura, F. (1998) ClpC regulates the fate of a sporulation inititation sigma factor σH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29, 505–513.

    Article  PubMed  CAS  Google Scholar 

  111. Persuh, M., Turgay, K., Mandi-Mulec, I., and Dubnau, D. (1999) The N- and C-terminal domains of MecA recognise different partners in the competence molecular switch. Mol Microbiol 33, 886–894.

    Article  PubMed  CAS  Google Scholar 

  112. Rouquette, C., Ripio, M-T., Pellegrini, E., Bolla, J-M., Tascon, R.I., Vezquez-Boland, J-A., and Berche, P. (1996) Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol Microbiol 21, 977–987.

    Article  PubMed  CAS  Google Scholar 

  113. Rouquette, C., de Chastellier, C., Nair, S., and Berche, P. (1998) The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol Microbiol 27, 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  114. Nair, S., Milohanic, E., and Berche, P. (2000) ClpC Atpase is required for cell adhesion and invasion of Listeria monocytogenes. Infect Immun 68, 7061–7068.

    Article  PubMed  CAS  Google Scholar 

  115. Nair, S., Frehel, C., Nguyen, L., Escuyer, V., and Berche, P. (1999) ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol Microbiol 31, 185–196.

    Article  PubMed  CAS  Google Scholar 

  116. Gaillot, O., Pellegrini, S., Bregenholt, S., Nair, S., and Berche, P. (2000) The ClpP serine proteinase is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 35, 1286–1294.

    Article  PubMed  CAS  Google Scholar 

  117. Chastanet, A., Derre, I., Nair, S., Msadek, T. (2004) clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 186, 1165–1174.

    Article  PubMed  CAS  Google Scholar 

  118. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L., and Simon, D. (1998) Large scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66, 5620–5629.

    PubMed  CAS  Google Scholar 

  119. Charpentier, E., Novak, R., and Tuomanen, E. (2000) Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by ClpC. Mol Microbiol 37, 717–726.

    Article  PubMed  CAS  Google Scholar 

  120. Robertson, G.T., Ng, W.L., Foley, J., Gilmour, R., and Winkler, M.E. (2002) Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184, 3508–3520.

    Article  PubMed  CAS  Google Scholar 

  121. Ibrahim, Y.M., Kerr, A.R., Silva, N.A., and Mitchell, T.J. (2005) Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun 73, 730–740.

    Article  PubMed  CAS  Google Scholar 

  122. Kwon, H.Y., Kim, S.W., Choi, M.-H., Ogunniyi, A.D., Paton, J.C., Park, S.H., Pyo, S.-N., and Rhee, D-K. (2003) Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect Immun 71, 3757–3765.

    Article  PubMed  CAS  Google Scholar 

  123. Kwon, H.Y., Ogunniyi, A.D., Choi, M.-H., Pyo, S.-N., Rhee, D.-K., and Paton, J.C. (2004) The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72, 5646–5653.

    Article  PubMed  CAS  Google Scholar 

  124. Lemos, J.A.C., and Burne, R.A. 2002. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184, 6357–6366.

    Article  PubMed  CAS  Google Scholar 

  125. Hensel, M., Shea, J.E., Gleeson, C., Jones, M.D., Dalton, E., and Holden, D.W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.

    Article  PubMed  CAS  Google Scholar 

  126. Mei, J.M., Nourbakhsh, F., Ford, C.W., Holden, D.W. (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26, 399–407.

    Article  PubMed  CAS  Google Scholar 

  127. Turner, A.K., Lovell, M.A., Hulme, S.D., Zhang-Barber, L., and Barrow, P.A. (1998) Identification of Salmonella typhimurium genes required for colonization of the chicken ailimentary tract and for virulence in newly hatched chicks. Infect Immun 66, 2099–2106.

    PubMed  CAS  Google Scholar 

  128. Chatterjee, I., Becker, P., Grundmeier, M., Bischoff, M., Somerville, G.A., Peters, G., Sinha, B., Harraghy, N., Proctor, R.A., and Herrmann, M. (2005) Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery and death. J Bacteriol 187, 4488–4496.

    Article  PubMed  CAS  Google Scholar 

  129. Frees, D., Qazi, S.N., Hill, P.J., and Ingmer, H. (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48, 1565–1578.

    Article  PubMed  CAS  Google Scholar 

  130. Frees, D., Chastanet, A., Qazi, S., Sorensen, K., Hill, P., Msadek, T., and Ingmer, H. (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54, 1445–1462.

    Article  PubMed  CAS  Google Scholar 

  131. Frees, D., Thomsen, L.E., and Ingmer, H. (2005) Staphylococcus aureus ClpYQ plays a minor role in stress survival. Arch Microbiol 183, 286–291.

    Article  PubMed  CAS  Google Scholar 

  132. Gray, C.G., Cowley, S.C., Cheung, K.K., and Nano, F.E. (2002.) The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215, 53–56.

    Article  PubMed  CAS  Google Scholar 

  133. Capestany, C.A., Tribble, G.D., Maeda, K., Demuth, D.R., and Lamont, R.J. (2008) Role of the Clp system in stress tolerance, biofilm formation and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 190, 1436–1446.

    Article  PubMed  CAS  Google Scholar 

  134. Otvos, L., Insug, O., Rogers, M.E., Consolvo, P.J., Condie, B.A., Lovas, S., Bulet, P., and Blaszczyk-Thurin, M. (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150–14159.

    Article  PubMed  CAS  Google Scholar 

  135. Kragol, G., Lovas, S., Varadi, G., Condie, B.A., Hoffmann, R., and Otvos, L. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026.

    Article  PubMed  CAS  Google Scholar 

  136. Chesnokova, L.S., Slepenkov, S.V., and Witt, S.N. (2004) The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATP-ase activity of both wild-type and lidless DnaK. FEBS Letts 565, 65–69.

    Article  CAS  Google Scholar 

  137. Cudic, M., Condie, B.A., Weiner, D.J., Lysenko, E.S., Xiang, Z.Q., Insug, O., Bulet, P., and Otvos, L. (2002) Development of novel antibacterial peptides that kill resistant isolates. Peptides 23, 2071–2083.

    Article  PubMed  CAS  Google Scholar 

  138. Svensson, A., Larsson, A., Emtenas, H., Hedenstrom, M., Fex, T., Hultgren, S.J., Pinkner, J.S., Almqvist, F., and Kihlberg, J. (2001) Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. ChemBiochem 12, 915–818.

    Google Scholar 

  139. Akagawa, H., Takano, Y., Ishii, A., Mizuno, S., Izui, R., Sameshima, T., Kawamura, N., Dobashi, K., and Yoshioka, T. (1999) Stresgenin B, an inhibitor of heat-induced heat shock protein gene expression, produced by Streptomyces sp. AS-9. J Antibiot (Tokyo) 52, 960–970.

    CAS  Google Scholar 

  140. Brotz-Oesterhelt, H., Beyer, D., Kroll, H.-P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J.E., Sahl, H.-G., and Labischinski, H. (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibotics. Nat Med 11, 1082–1087.

    Article  PubMed  CAS  Google Scholar 

  141. Hinzen, B., Raddatz, S., Paulsen, H., Lampe, T., Schumacher, A., Häbich, D., Hellwig, V., Benet-Buchholz, J., Endermann, R., Labischinski, H., and Brötz-Oesterhelt, H. (2006) Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 1, 689–693.

    Article  PubMed  CAS  Google Scholar 

  142. Sittka, A., Pfeiffer, V., Tedin, K., and Vogel, J. (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63, 193–217.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Henderson, B. (2009). Heat Shock Proteins Are Mediators of Bacterial-Host Interactions. In: Pockley, A., Calderwood, S., Santoro, M. (eds) Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease. Heat Shock Proteins, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2976-8_10

Download citation

Publish with us

Policies and ethics