Skip to main content

Molecular Markers Based Approaches for Drought Tolerance

  • Chapter
  • First Online:

Abstract

Drought stress is one of the most serious yield-reducing stresses in agriculture. Understanding the genetic basis of traits that can practically contribute towards development of drought resistant varieties is of paramount importance. This review focuses on the utilities of the chosen morpho-physiological traits in determining drought tolerance and provides an overview of molecular markers and genomics approaches that are available to increase the efficiency of breeding of these traits in crop breeding programmes. Suitable examples are cited where marker assisted selection (MAS) methods have started to prove useful in breeding for increased drought tolerance. Applications of model and non-model genomes in identifying functional markers associated with quantitative trait loci (QTLs), genes, and their allelic variants contributing to drought tolerance are highlighted. Genetics, genomics and molecular biology methods are also discussed for fine mapping and cloning of major QTLs as well as of their applications in developing more robust and affordable tools and technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T et al. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and Abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Abebe T, Guenzi AC, Martin B et al. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes Proc Natl Acad Sci U S A 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Lǜbberstedt T (2003) Functional markers in plants Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Austin RB, Henson IE, Quarrie SA (1982) Abscisic acid and drought resistance in wheat, millet and rice In: Drought resistance in crops with the emphasis on rice manila, IRRI, pp 171–180

    Google Scholar 

  • Babu CR, Nguyen BD, Chamarerk V et al. (2003) Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance Crop Sci 43:1457–1469

    Article  CAS  Google Scholar 

  • Bahieldin A, Hesham HT, Eissa HF et al. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Banziger M, Setimela PS, Hodson D et al. (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manage 80:212–224

    Article  Google Scholar 

  • Baum M, Grando S, Backes G et al. (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H spontaneum 41–1 Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V et al. (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice Crop Sci 47:507–518

    Article  Google Scholar 

  • Bidinger FR, Napolean T, Hash CT et al. (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions Crop Sci 47:969–980

    Article  Google Scholar 

  • Birnbaum K, Benfey PN (2004) Network building: Transcriptional circuits in the root Curr Opin Plant Biol 7:582–588

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY et al. (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Bolanos J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res 48:65–80

    Article  Google Scholar 

  • Brennan JP, Condon AG, Van Ginkel M et al. (2007) An economic assessment of the use of physiological selection for stomatal aperture-related traits in the CIMMYT wheat breeding programme. J Agric Sci 145:187–194

    Article  Google Scholar 

  • Capell T, Escobar C, Liu H et al. (1998) Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor appl Genet 97:246–254

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, bedeck FW et al. (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S et al. (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  Google Scholar 

  • Chao S, Baysdorfer C, Heredia-Diaz O et al. (1994) RFLP mapping of partially sequenced leaf cDNA clones in maize. Theor Appl Genet 88:717–21

    Article  CAS  Google Scholar 

  • Chandra Babu R, Jingxian Z, Blumc A, David Hod T-H, Wue R, Nguyenf HT: HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 2004, 166:855-862.

    Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand. Plant Physiol 147:469–486

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A et al. (2005) A guard cell specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ et al. (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  PubMed  CAS  Google Scholar 

  • Courtois B, McLaren G, Sinha PK et al. (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6:55–66

    Article  CAS  Google Scholar 

  • Crosbie, T.M., S.R. Eathington, G.R. Johnson, M. Edwards, R. Reiter, S. Stark, R.G. Mohanty, M. Oyervides, R.E. Buehler, A.K. Walker, R. Dobert, X. Delaney, J.C. Pershing, and M.A. Hall. 2006. Plant breeding: Past, present, and future. In K.R. Lamkey and M. Lee (ed.) Plant Breeding: Th e Arnel R. Hallauer Int. Symp., Mexico City. 17–22 Aug. 2003. Blackwell Publ., Ames, IA.

    Google Scholar 

  • Davis D, Sanchez-Villeda H, Poroyko V et al. (2006) Root transcripts are functionally clustered in the maize genome In: Proceedings of the twenty-third annual missouri symposium plant roots: from genes to form & function, 24–25 May 2006 University of Missouri, Columbia, MO, p 99

    Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M: Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 2005,41:95-106.

    Google Scholar 

  • Diab AA, Kantety RV, Ozturk NZ et al. (2008) Drought-inducible genes and expressed sequence tags associated with components of drought tolerance in durum wheat. Scientific Res Assay 3:9–26

    Google Scholar 

  • Dingkuhn M, Cruz RT, O’Toole JC et al. (1991) Responses of seven diverse rice cultivars to water deficits III Accumulation of abscisic acid and proline in relation to leaf water-potential and osmotic adjustment. Field Crop Res 27:103–117

    Article  Google Scholar 

  • Feltus FA, Singh HP, Lohithaswa HC et al. (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops Plant Physiol 140:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Fizames C, Mu S, Cazette C et al. (2004) The Arabidopsis root transcriptome by serial analysis of gene expression: Gene identification using the genome sequence. Plant Physiol 134:67–80

    Article  PubMed  CAS  Google Scholar 

  • Francki MG, Appels R, Hunter A et al. (2004) Comparative organization of 3BS and 7AL using wheat-rice synteny. Funct Integr Genomics. doi 101007/s10142-004-0110-5

    Google Scholar 

  • Fredslund J, Madsen LH, Hougaard BK et al. (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7:207

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K: AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis, Plant Cell 2005, 17: 3470-3488.

    Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Kim J, Owens T et al. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S et al. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R et al. (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T-H et al. (2002) A draft sequence of the rice genome (Oryza sativa L ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustogi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Func Integr Genomics 4:139–162

    CAS  Google Scholar 

  • Hardenbol P, Baner J, Jain M et al. (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21:673–678

    Article  PubMed  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS et al. (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106(1):133–142

    PubMed  CAS  Google Scholar 

  • Hazen SP, Kay SA (2003) Gene arrays are not just for measuring gene expression. Trends Plant Sci 8:413–416

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee LT, Yang PT et al. (2002b) Heterology expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Innes P, Blackwell RD, Quarrie SA (1984) Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J agric Sci Camb 102:341–351

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:1–13

    Google Scholar 

  • Johnson, R. 2004. Marker-assisted selection. Plant Breed. Rev. 24:293–309.

    Google Scholar 

  • Joshee N, Kisaka H, Kitagawa Y (1998) Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice. Plant Cell Physiol 39:64–72

    PubMed  CAS  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–54

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY et al. (2002) Arabidposis basic leucine zipper proteins that mediate stress-responsive abscisic acid signalling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R et al. (2007) Improvement of water use effeiciency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y et al. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Kumar LS (1999) DNA markers in plant improvement: an overview. Biotech Adv 17:143–182

    Article  CAS  Google Scholar 

  • Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Lancreas JC, Pantuwan G, Jongdee B et al. (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  Google Scholar 

  • Landi P, Sanguineti MC, Liu C et al. (2007) Root-ABA1 QTL affects root lodging, grain yield and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

    Article  PubMed  CAS  Google Scholar 

  • Landi P, Sanguineti MC, Salvi S et al. (2005) Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Mol Breed 15:291–303

    Article  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A et al. (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46 853–865

    Article  CAS  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ni P, Francki M et al. (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics. doi 101007/s10142-004-0104-3

    Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  PubMed  CAS  Google Scholar 

  • Li-Feng L, Hong-Liang Z, Ping M et al. (2007) Construction and evaluation of near-isogenic lines for major QTLs of basal root thickness and 1000-grain weight in lowland and upland rice. Chin J Agric Biotechnol 4:199–205

    Article  CAS  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR et al. (1996) Locating QTL for osmotic adjustment and deydration tolerance in rice. J Exp Bot 47:1427–1436

    Article  CAS  Google Scholar 

  • Lohithasawa HC, Feltus FA, Singh HP et al. (2007) Leveraging the rice genome sequence for monocot comparative and translational genomics. Theor Appl Genet 115:237–243

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al. (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Marè C, Mazzucotelli E, Crosatti C et al. (2004) Hv-WRKY 38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    Article  PubMed  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed  CAS  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Nachit MM, Monneveux P, Araus JL et al. (2000) Relationship of dryland productivity and drought tolerance with some molecular markers for possible MAS in durum wheat (Triticum turgidum L var durum) Durum wheat improvement in the Mediterranean region. New challenges pp. 203–206

    Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al. (2007) Plant nuclear factor Y (NY-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  PubMed  Google Scholar 

  • Nguyen TT, Klueva N, Chamareck V et al. (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics 272:35–46

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J: CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 2004, 101:3985-3990.

    Google Scholar 

  • Oh SJ, Song SI, Kim YS et al. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Droughtadaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 2007:34:189–203

    Article  Google Scholar 

  • Park S, Li J, Pittman JK et al. (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A 102:18830–18835

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Tanksley SD, Sorrells ME (1991) DNA markers in crop improvement In: Sparks DL (ed) Advances in agronomy, Academic, New York, pp 39–90

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Pelleschi S, Guy S, Kim JY et al. (1999) Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves gene-specific expression under water stress. Plant Mol Biol 39:373–380

    Article  PubMed  CAS  Google Scholar 

  • Pelleschi S, Leonardi A, Rocher JP et al. (2006) Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants submitted to water deprivation. Mol Breed 17:21–39

    Article  CAS  Google Scholar 

  • Prabuddha HR, Manjunatha K, Venuprasad R et al. (2008) Identification of near-isogenic lines: an innovative approach, validated for root and shoot morphological characters in a mapping population of rice (Oryza sativa L.). Euphytica 160:357–368

    Article  Google Scholar 

  • Prioul J-L, Quarrie S, Causse M et al. (1997) Dissecting complex physiological functions through the use of molecular quantitative genetics. J Exp Bot 48:1151–1163

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA et al. (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B et al. (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 1–2:39–55

    Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 2004, 45:1042-1052.

    Google Scholar 

  • Quarrie S, Lazic Jancic V, Kovacevic D et al. (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94

    Article  PubMed  CAS  Google Scholar 

  • Ragot, M., G. Gay, J.P. Muller, and J. Durovray. 2000. Efficient selection for the adaptation to the environment through QTL mapping and manipulation in maize. p. 128–130. In J.M. Ribaut and D. Poland (ed.) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A Strategic Planning Workshop, El-Batan, Mexico. 21–25 June 1999. CIMMYT, El-Batan, Mexico.

    Google Scholar 

  • Rekika D, Nachit MM, Araus JL et al. (1998) Effects of water deficit on photosynthetic capacity and osmotic adjustment in tetraploid wheats. Photosynthetica 129–138

    Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environements. Curr Opin Plant Biol 11:171–179

    Article  PubMed  Google Scholar 

  • Ribaut JM, Bänziger M, Betran J et al. (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize In: MS Kang (ed) Quantitative genetics, genomics, and plant breeding CABI Publishing, Wallingford, UK, p 85–99

    Google Scholar 

  • Ribaut JM, Bänziger M, Setter T et al. (2004) Genetic dissection of drought tolerance in maize: A case study In: Nguyen N, Blum A (ed) Physiology and biotechnology integration for plant breeding, Marcel Dekker Inc, New York, pp 571–611

    Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch DA et al. (1996) Identification of quantitative trait loci under drought conditions in tropical maize: I Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92 905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, González-de-León D et al. (1997) Identification of quantitative trait loci under drought conditions in tropical maize: II Yield components and marker-assisted selection strategies. Theor Appl Genet 94 887–896

    Article  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manage 80:197–211

    Article  Google Scholar 

  • Robin S, Pathan MS, Courtois B et al. (2003) Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 107:1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J et al. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Sci U S A 104:11376–11381

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R, Phillips RL (2001) Development of PCR based assays for allelic discrimination in maize by using the 5-nuclease procedure. Mol Breed 8:169–176

    Article  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT et al. (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L Moench). Plant Mol Biol 48:713–726

    Article  PubMed  CAS  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P et al. (1999) QTL analysis of droughtrelated traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    Article  CAS  Google Scholar 

  • Sawkins MC, Farmer AD, Hoisington D et al. (2004) Comparative map and trait viewer (CMTV): An integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol Biol 56:465–480

    Article  PubMed  CAS  Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008a) Advent of DNA markers to decipher genome sequence polymorphism In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes, CRC, New York, pp 477–495

    Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008b) Applicability of DNA markers for genome diagnostics of grain legumes In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes, CRC, New York, pp 497–557

    Google Scholar 

  • Sehgal D, Raina SN (2008c) DNA markers and germplasm resource diagnostics: new perspectives in crop improvement and conservation strategies In: Arya ID, Arya S (eds) Utilization of biotechnology in plant sciences Rastogi, Meerut, India, pp 39–54

    Google Scholar 

  • Seki M, Narusaka M, Ishida J et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Serraj R, Hash CT, Rivzi SMH et al. (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337

    Article  Google Scholar 

  • Shen L, Courtois B, McNally KL et al. (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    Article  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Mackill DJ (1991) Genetics of leaf rolling under drought stress In: Rice genetics II, IRRI, Manila, pp 159–166

    Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S et al. (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  PubMed  CAS  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE et al. (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  PubMed  CAS  Google Scholar 

  • Stemple DL (2004) TILLING: A high-throughput harvest for functional genomics. Nat Rev Genet 5:145–150

    Article  PubMed  CAS  Google Scholar 

  • Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–397

    Article  PubMed  CAS  Google Scholar 

  • Tambussi EA, Bort J, Guiamet JJ et al. (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–234

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, This D, Khairallah M et al. (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L). Theor Appl Genet 96:688–698.

    Article  CAS  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B et al. (2003) QTL for relative water content in field grown barleys and their stability across Mediterranean environments. Thoer Appl Genet 108:181–188

    Article  CAS  Google Scholar 

  • Tuberosa R, Gill BS, Quarrie SA (2002) Cereal genomics: ushering in a brave new world. Plant Mol Biol 48:445–449

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2004) QTLs and genes for tolerance to abiotic stress in cereals In: Gupta PK Varshney RK (eds) Cereal genomics, Kluwer Academic, Netherlands, pp 253–315

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC et al. (2003) Searching for QTLs controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P et al. (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L). Theor Appl Genet 97:744–755

    Article  CAS  Google Scholar 

  • Tuberosa R, Silvio S, Silvia G et al. (2007) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47 (S3) S120-S141

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB et al. (1996) Identification of quantitative trait loci associated with preflowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuyen DD, Prasad DT (2008) Evaluating difference of yield trait among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice 16:24–33

    Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K: SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 2004, 101:17306-17311.

    Google Scholar 

  • Vinod MS, Shrama N, Manjunatha K et al. (2006) Candidate genes for drought tolerance and improved productivity in rice. J Biosci 31:69–74

    Article  PubMed  CAS  Google Scholar 

  • Wang Xu-S, Zhu J, Mansueto L et al. (2005) Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic map (QTL) map with the rice genome physical map. J Zhejiang Univ SCI 6B (5):382–388

    Article  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al. (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Werner JD, Borevitz JO, Warthmann N et al. (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci U S A 102:2460–2465

    Article  PubMed  CAS  Google Scholar 

  • West MA, van Leeuwen H, Kozik A et al. (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Sharp RE, Durachko DM et al. (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol 111:765–772

    PubMed  CAS  Google Scholar 

  • Wu Y, Thorne ET, Sharp RE et al. (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N et al. (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR et al. (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolour L Moench). Genome 43:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yadav R, Courtois B, Huang N et al. (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632

    Article  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR et al. (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR et al. (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and testers background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikeri M et al. (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J et al. (2002) A draft sequence of the rice genome (Oryza sativa L ssp indica). Science 296:79–91

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A et al. (2001) Locating genomic regions associated with components of drought resistance in rice: Comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zheng BS, Yang L, Zhang WP et al. (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  PubMed  CAS  Google Scholar 

  • Zhu BC, Su J, Chan MC et al. (1998) Overexpression of a d-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES et al. (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Biotechnology and Biological Sciences Research Council (BBSRC) and Department for International Development (DFID) for funding to their work via grant number BB/F004133/1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sehgal, D., Yadav, R. (2010). Molecular Markers Based Approaches for Drought Tolerance. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_9

Download citation

Publish with us

Policies and ethics