Skip to main content

Techniques in Plant Proteomics

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement

Abstract

Plant proteomics is a relatively new research field that focuses on large-scale functional analysis of plant proteins. This new research field has already demonstrated immense potential for getting significantly deeper insight into the functional interaction of plant proteins and their roles in plant growth and development. The knowledge of key proteins responsible for valuable crop traits in the context of expression of other involved proteins plays pivotal role in discovery phase of crop improvement effort. This chapter introduces the field of plant proteomics in practical manner. Set of six figures helps to understand principles of protein extraction, separation and identification by mass spectrometry. Protein and peptide separation is introduced in greater details taking into account “gel-based” and “gel-free” methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, Fowler R, Howell G, Kinsella N, Skipp P, Coote P, O’Connor CD (1999) Defining protease specificity with proteomics: a protease with a dibasic amino acid recognition motif is regulated by a two-component signal transduction system in Salmonella. Electrophoresis 20:2241–2247

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Thelen JJ (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5:4684–4688

    Article  CAS  PubMed  Google Scholar 

  • Alban A, David SO, Bjorkesten L et al. (2003) A novel experimental design for comparative two-dimensional gel analysis, two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov ML,Gall LN, Krasnov NV, Nikolaev VI, Pavlenko VA, Shkurov VA (1984) Ion extraction from solutions at atmospheric pressure – a method for mass-spectrometric analysis for mass-spectrometric analysis of bioorganic substances. Dokl Akad Nauk SSSR 277:379–383

    Google Scholar 

  • Berggren K, Chernokalskaya E, Steinberg TH et al. (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21:2509–2521

    Article  CAS  PubMed  Google Scholar 

  • Canas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo J (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  CAS  PubMed  Google Scholar 

  • Chapman K (2002) The ProteinChip Biomarker System from Ciphergen Biosystems, a novel proteomics platform for rapid biomarker discovery and validation. Biochem Soc T 30:82–87

    Article  CAS  Google Scholar 

  • Chevallet M, Diemer H, Luche S et al. (2006) Improved mass spectrometry compatibility is afforded by ammoniacal silver staining. Proteomics 6:2350–2354

    Article  CAS  PubMed  Google Scholar 

  • Choudhary G, Horvath C (1996) Ion-exchange chromatography. Methods Enzymol 270:47–82

    Article  CAS  PubMed  Google Scholar 

  • Corbett JM, Dunn MJ, Posch A et al. (1994) Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension, An interlaboratory comparison. Electrophoresis 15:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Davidssona P, Sjogrena M (2005) The use of proteomics in biomarker discovery in neurodegenerative diseases. Dis Markers 21:81–92

    Google Scholar 

  • Delaplace P, van ver Wal F, Dierick J, Cordewener J, Fauconnier M, du Jardin P, America A (2006) Potato tuber proteomics: comparison of two complementary extraction methods designed for 2-DE of acidic proteins. Proteomics 6:6494–6497

    Article  CAS  PubMed  Google Scholar 

  • Dolník V (2008) Capillary electrophoresis of proteins 2005–2007. Electrophoresis 29:143–156

    Article  PubMed  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Ye M, Zhou H et al. (2007) Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics 6:1656–1665

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protocols 1:769–774

    Article  CAS  Google Scholar 

  • Görg A, Boguth G, Kopf A et al. (2002) Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2:1652–1657

    Article  PubMed  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–419

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  PubMed  Google Scholar 

  • Haper RG, Workman SR, Schuetzner S et al. (2004) Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis 25:1299–1306

    Article  Google Scholar 

  • Issaq HJ, Conrads TP, Janini GM et al. (2002) Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 23:3048–3061

    Article  CAS  PubMed  Google Scholar 

  • Jensen ON, Wilm M, Shevchenko A, Mann M (1999) Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol Biol112:513–530

    CAS  PubMed  Google Scholar 

  • Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939

    Article  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  • Lamanda A, Zahn A, Roder D et al. (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocolfor a better signal-to-background ratio and improved baseline resolution. Proteomics 4:599–608

    Article  CAS  PubMed  Google Scholar 

  • Le Nel A, Minc N, Smadja C et al. (2008) Controlled proteolysis of normal and pathological prion protein in a microfluidic chip. Lab Chip 8:294–301

    Article  PubMed  Google Scholar 

  • Lee WC, Lee KH (2004) Applications of affinity chromatography in proteomics. Anal Biochem 324:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Lescuyer P, Hochstrasser DF, Sanchez JC (2004) Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 25:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77:4081–4090

    Article  CAS  PubMed  Google Scholar 

  • Manza LL, Stamer SL, Ham AJL et al. (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5:1742–1745

    Article  CAS  PubMed  Google Scholar 

  • Mouradian S (2002) Lab-on-a-chip, applications in proteomics. Curr Opin Chem Biol 6:51–56

    Article  CAS  PubMed  Google Scholar 

  • Natarajan S, Xu C, Caperna T, Garrett W (2005) Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Analytical Biochem 342:214–220

    Article  CAS  Google Scholar 

  • Neuhoff V, Arold N, Taube D et al. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Nilsson CL, Davidsson P (2000) New separation tools for comprehensive studies of protein expression by mass spectrometry. Mass Spectrom Rev 19:390–397

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Peng Y, Pallandre A, Tran NT et al. (2008) Recent innovations in protein separation on microchips by electrophoretic methods. Electrophoresis 29:157–178

    Article  CAS  PubMed  Google Scholar 

  • Pons L, Chéry C, Mrabet N et al. (2005) Purification and cloning of two high molecular mass isoforms of peanut seed oleosin encoded by cDNAs of equal sizes. Plant Physiol Biochem 43:659–668

    Article  CAS  PubMed  Google Scholar 

  • Posewitz MC, Tempst P (1999) Immobilized gallium (III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T, Strub JM, Luche S et al. (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stain for protein detection in gels. Proteomics 1:699–704

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the plumbaginaceae. purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from limonium latifolium leaves. Plant Physiol 126:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Rehm H (2006) Protein biochemistry and proteomics. Academic, London

    Google Scholar 

  • Righetti PG, Castagna A, Antonioli P et al. (2005) Prefractionation techniques in proteome analysis, The mining tools of the third millennium. Electrophoresis 26:297–319

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 12:1154–1169

    Google Scholar 

  • Shevchenko A, Wilm M, Vorm O et al. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Song J, Braun G, Bevis E, Doncaster K (2006) A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-DE and MS analysis. Electrophoresis 27:3144–3151

    Article  CAS  PubMed  Google Scholar 

  • Sriyam S, Sinchaikul S, Tantipaiboonwong P et al. (2007) Enhanced detectability in proteome studies. J Chromatogr B 849:91–104

    Article  CAS  Google Scholar 

  • Stasyk T, Huber LA (2004) Zooming in, Fractionation strategies in proteomics. Proteomics 4:3704–3716

    Article  CAS  PubMed  Google Scholar 

  • Steinberg TH, Agnew BJ, Gee KR et al. (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3:1128–1144

    Article  CAS  PubMed  Google Scholar 

  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107:715–726

    Article  CAS  PubMed  Google Scholar 

  • Striegel A (2008) Size-exclusion chromatography, smaller, faster, multi-detection, and multi-dimensions. Anal Bioanal Chem 390:303–305

    Article  CAS  PubMed  Google Scholar 

  • Tastet C, Lescuyer P, Diemer H et al. (2003)A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 24:1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Tirumalai RS, Chan KC, Prieto DA et al. (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  • Tishchenko G, Dybal J, Mészárosová K et al. (2002) Purification of the specific immunoglobulin G1 by immobilized metal ion affinity chromatography using nickel complexes of chelating porous and nonporous polymeric sorbents based on poly(methacrylic esters) effect of polymer structure. J Chromatogr A 954:115–126

    Article  CAS  PubMed  Google Scholar 

  • Zellner M, Winkler W, Hayden H et al. (2005) Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 26:2481–2490

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yan W, Aebersold R (2004) Chemical probes and tandem mass spectrometry, a strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol 8:66–75

    Article  CAS  PubMed  Google Scholar 

  • Yuana X, Desiderioa DM (2005) Proteomics analysis of human cerebrospinal fluid. J Chromatogr B 815:179–189

    Article  Google Scholar 

  • Vorderwülbecke S, Cleverley S, Weinberger SR et al. (2005) Protein quantification by the SELDI-TOF-MS−based ProteinChip System. Nat Methods 2:393–395

    Article  Google Scholar 

  • Wang S, Zhang X, Regnier FE (2002) Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J Chromatogr A 949:153–162

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hanash S (2003) Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B - Analyt Technol Biomed Life Sci 787:11–18

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  CAS  PubMed  Google Scholar 

  • Wehr T (2001) Separation Technology in Proteomics. LCGC 19:702–711

    CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphrey-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    CAS  PubMed  Google Scholar 

  • Wolters DA,Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Karger B (1996) Hydrophobic interaction chromatography of proteins. Methods Enzymol 270:27–47

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lenchik NJ, Pabst MJ et al. (2005) Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 26:225–237

    Article  CAS  PubMed  Google Scholar 

  • Yates JR 3rd, Eng JK, McCormack AL (1995a) Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal Chem. 67:3202–3210

    Article  CAS  PubMed  Google Scholar 

  • Yates JR 3rd, Eng JK, McCormack AL, Schieltz D (1995b) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by FP7 of the European Union (MIRG-CT-2007-200165). This chapter reflects only the author’s views and the Community is not liable for any use that might be made of information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hajduch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Škultéty, L., Danchenko, M., Pret’ová, A., Hajduch, M. (2010). Techniques in Plant Proteomics. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_19

Download citation

Publish with us

Policies and ethics