Skip to main content

Genomics for Wheat Improvement

  • Chapter
  • First Online:

Abstract

The ability to meet the demands of global food production will require efficient means to develop modern cultivars adaptable to a range of adverse environmental conditions in marginal wheat production zones. Breeding programs will be relying on the tools used to track allelic combinations contributing to trait variation through DNA marker-assisted selection and efficient selection of genotypes expressing desirable phenotypes in target environments. The recent developments in wheat genomics have provided resources to develop new molecular markers and strategies for genetic analysis and identification of marker-trait associations. Included are new DNA marker technologies capable of developing high resolution genetic maps and QTL mapping allowing detection of trait variation at specific loci. The ability to locate the chromosomal region associated with phenotypic variation provides a leading edge towards developing functionally-associated markers (FAM) to track alleles in a breeding program. Map-based cloning, comparative genomics and sequencing the wheat genome provides current and future opportunities for discovering genes responsible for trait variation. Determining the function of newly discovered genes will allow their effective use in wheat improvement as FAM markers for marker-assisted breeding. Therefore, transgenic plants overexpressing or silencing genes by RNA interference (RNAi) and non-transgenic approaches such as virus-induced gene silencing (VIGS) and Targeting Induced Local Lesions IN Genomes (TILLING) provide strategies to determine gene function and their effects on phenotypic variation. Transgenic wheat plants and TILLING approaches also has the advantage in developing potential new varieties but the latter would be the only option in countries where the release of genetically modified wheat is constrained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre P, Montimer K, Pateyron S, Foote T, Griffiths S, Caboche M, Chaloub B (2003) Construction and characterization of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasms ‘Chinese Spring’. Cereal Res Commun 31:331–338

    CAS  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Popelka JC, Wieser H (2004) Stable expression of 1Dx5 and 1Dy10 high-molecular weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Mol Biol 54:783–792

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Google Scholar 

  • Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Funct Integr Genomics 3:1–24

    PubMed  CAS  Google Scholar 

  • Bagge M, Xia XC, Lubberstedt T (2007) Functional markers in wheat- commentary. Curr Opin Plant Biol 10:211–216

    Article  PubMed  CAS  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotech 15:1295–1299

    Article  CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    Article  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Benmoussa M, Vezina LP, Page M, Gelinas P, Yelle S, Laberge S (2004) Potato flour viscosity improvement is associated with the expression of a wheat LMW-glutenin gene. Biotech Bioeng 87:495–500

    Article  CAS  Google Scholar 

  • Bhalla PL (2006) Genetic engineering of wheat- current challenges and opportunities. Trends Biotech 24:305–311

    Article  CAS  Google Scholar 

  • Bhalla PL, Ottenhof HH, Singh MB (2006) Wheat transformation- an update of recent progress. Euphytica 149:353–366

    Article  Google Scholar 

  • Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high molecular weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45:172–183

    Article  CAS  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheta breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Caldwell D, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Chao S, Lazo GR, You F, Crossman CC, Hummel DD, Lui N, Laudencia-Chingcuanco D, Anderson JA, Close TJ, Dubcovsky J, Gill BS, Gill KS, Gustafson JP, Kianian SF, Lapitan NLV, Nguyen HT, Sorrells ME, McGuire PE, Qulaset CO, Anderson OD (2006) Use of large-scale Triticeae expressed sequence tag resource to reveal gene expression profiles in hexaploid wheat (Triticum aestivum L.). Genome 49:531–544

    Article  PubMed  Google Scholar 

  • Cheng ZQ, Targolli J, Huang XQ, Wu R (2002) Wheat LEA genes PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  • Choi I-R, Stenger DC, Morris TJ, French R (2000) A plant virus vector for systemic expression of foreign genes in cereals. Plant J 23:547–555

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feiullet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001)Highthroughput screening for induced point mutations. Plant Physiol 126:480–484

    Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information by marker data. Genetics 168:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cereal Sci 38:301–306

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Denli AM, Hannon GJ (2003) RNAi: an ever-growing puzzle. Trends Biochem Sci 28:196–201

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  CAS  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye, and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci 102:19243–19248

    Article  PubMed  CAS  Google Scholar 

  • Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 59:297–307

    Article  CAS  Google Scholar 

  • Dong CN, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analysis. Plant Physiol 129:1368–1381

    Article  CAS  Google Scholar 

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotpying the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Faize M, Sourice S, Dupuis F, Parisi L, Gautier MF, Chevreau E (2004) Expression of wheat puroindoline-b reduces scab resistance in transgenic apple (Malus × Domestica Borkh). Plant Sci 167:347–354

    Article  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci. 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Foote T, Griffiths S, Allouis S, Moore G (2004) Construction and analysis of a BAC library in the grass Brachypodium sylvaticum and its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct Integr Genomics 4:26–33

    Article  PubMed  CAS  Google Scholar 

  • Francki M, Appels R (2007) Comparative genomics and crop improvement. In: James R. Brown (ed) Comparative genomics: fundamental and applied perspectives. CRC/Taylor & Francis, New York, USA, pp 323–342

    Google Scholar 

  • Francki MG, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 4:118–130

    Article  PubMed  CAS  Google Scholar 

  • Francki MG, Walker E, Forster JW, Spangenburg G, Appels R (2006) Fructosyltransferase and invertase genes evolved by gene duplication and rearrangement: rice, perennial ryegrass and wheat gene families. Genome 49:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for wheat functional gene analysis. Transgenic Res 16:689–701

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta A, Mangini, Mule G, Blanco A (2007) Charaterization of dicnulceotide and trinucleotide EST-SSR derived microsatellites in the wheat genome. Euphytica 153:73–85

    Article  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al. (2002) A draft sequence of the rice genome (Oryza sativa L ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumay N, Blayan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  • Handa H, Namiki N, Xu D, Ban T (2008) Dissection of the FHB resistance QTL in the short arm of wheat chromosome 2D using comparative genomic approach: from QTL to candidate gene. Mol Breed. doi: 10.1007/s11032-008-9157-7

    Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008a) Application of multiplex-ready PCR for fluoresence-based SSR genotyping in wheat and barley. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008b) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80

    Article  PubMed  CAS  Google Scholar 

  • He GY, Jones HD, D’Ovidio R, Masci S, Chen MJ, West J, Butow B, Anderson OD, Lazzeri P, Fido R, Shewry PR (2005) Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties. J Cereal Sci 42:225–231

    Article  CAS  Google Scholar 

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Ann Rev Plant Biol 54:375–401

    Article  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hogg AC, Beecher B, Martin JM, Meyer F, Talbert L, Lanning S, Giroux MJ (2005) Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci 45:871–878

    Article  CAS  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech J 2:381–387

    Article  CAS  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu GH (2003) Overexpression of a gene encoding hydrogen peroxide generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Feller JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Janda J, Bartos J, Safar J, Kubalakova M, Valarik M, Cihakikova J, Simkova H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Dolezel J (2004) Construction of a subgenomic BAC library specific for chromosome 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Janda J, Safar J, Kubalakova M, Bartos J, Kovarova P, Suchankova P, Pateyron S, Cihalikova J, Sourdille P, Simkova H, Faivre-Rampant P, Hribova E, Bernard M, Lukaszewski A, Dolezel J, Chalhoub B (2006) Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP based maps of the homoeologous group 6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  • Kellog EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  Google Scholar 

  • Krishnamurthy K, Giroux MJ (2001) Expression of wheat purindoline genes in transgenic rice enhances grain softness. Nature Biotech 19:162–166

    Article  CAS  Google Scholar 

  • Kuchel H, Ye G, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker assisted wheat breeding strategy. Mol Breed 16:67–78

    Article  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Gen 4:34–46

    Article  CAS  Google Scholar 

  • Lantican MA, Pingali PL, Rajaram S (2002) Are marginal wheat environments catching up?. In: Ekboir J (ed) CIMMYT 2000–2001 world wheat overview and outlook: developing no-till packages for small-scale farmers. CIMMYT, Mexico, DF

    Google Scholar 

  • Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC et al. (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168:585–593

    Article  PubMed  Google Scholar 

  • Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat barley comparison. Funct Integr Genomics 4:84–93

    Article  PubMed  CAS  Google Scholar 

  • Li JR, Zhao W, Li QZ, Ye XG, An BY, Li X, Zhang XS (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genet Sin 32:846–854

    PubMed  CAS  Google Scholar 

  • Liang HY, Maynard CA, Allen RD, Powell WA (2001) Increasing Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    Article  PubMed  CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Ling P, Chen XM (2005) Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome 48:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation –competent artificial chromosome (TAC) vector. Plant J 23:687–695

    Article  PubMed  CAS  Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Ma XJ, Tao Y, Zhao XY, Zhang XS (2007) Wheat TaAS2, a member of LOB family, affects the abaxial–abaxial polarity of leaves in transgenic Arabidopsis. Plant Sci 172:181–188

    Article  CAS  Google Scholar 

  • MacKay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  PubMed  CAS  Google Scholar 

  • Martin JM, Meyer FD, Smidansky ED, Wanjugi H, Blechl AE, Giroux MJ (2006) Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theor Appl Genet 113:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Masci S, D’Ovidio R, Scossa F, Patacchini C, Lafiandra D, Anderson OD, Blechl AE (2003) Production and characterization of a transgenic bread wheat line over-expressing a low molecular weight glutenin subunit gene. Mol Breed 12:209–222

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotech 18:455–457

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free threshing hexaploid relatives. J Hered 37:81–89

    Google Scholar 

  • Meins F, S-Ammour A, Blevins T (2005). RNA silencing systems and their relevance in plant development. Ann Rev Cell Dev Biol 21:297–318

    Article  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Ann Rev Plant Physiol Mol Biol 47:23–48

    Article  CAS  Google Scholar 

  • Miftahudin, Ross K, Ma X-F, Mahmoud AA, Layton J, Rodriguez-Milla MA, Chikmawati T, Ramalingam J, Feril O, Pathan MS, Surlan Momirovic G, Kim S, Chema K, Fang P, Haule L, Struxness H, Birkes J, Yaghoubian C, Skinner R, McAllister J, Nguyen V, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorák J, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Bermudez-Kandianis CE, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Lazo GR, Chao S, Anderson OD, Gonzalez-Hernandez J, Conley EJ, Anderson JA, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO, Nguyen HT, Gustafson JP (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Gen Genomics 270:371–377

    Article  CAS  Google Scholar 

  • Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924

    Article  PubMed  CAS  Google Scholar 

  • Moullet O, Zhang HB, Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Mullan DJ, Colmer TM, Francki MG (2007) Arabidopsis-rice-wheat orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress. Mol Genet Genomics 277:199–212

    Article  PubMed  CAS  Google Scholar 

  • Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorák J, Miftahudin, Gustafson JP, Pathan MS, Nguyen HT, Matthews DE, Chao S, Lazo GR, Hummel DD, Anderson OD, Anderson JA, Gonzalez-Hernandez JL, Peng JH, Lapitan N, Qi LL, Echalier B, Gill BS, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Erayman M, Gill KS, McGuire PE, Qualset CO, Sorrells ME (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

    Article  PubMed  CAS  Google Scholar 

  • Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93

    Article  PubMed  CAS  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Murayama S, Kobayashi-Uehara A, Handa H (2006) Overexpression of wheat mitochondrial uncoupling protein in rice plants confers tolerances to oxidative stresses promoted by exogenous hydrogen peroxidase and low temperature. Mol Breed 18:51–56

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  CAS  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    Article  PubMed  CAS  Google Scholar 

  • Ramputh AI, Arnason JT, Cass L, Simmonds JA (2002) Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Sci 162:431–440

    Article  CAS  Google Scholar 

  • Randhawa HS, Dilbirligi M, Sidhu D, Erayman M, Sandhu D, Bondareva S, Chao S, Lazo GR, Anderson OD, Miftahudin, Gustafson JP, Echalier B, Qi LL, Gill BS, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Sorrells ME, Conley EJ, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Nguyen HT, Endo TR, Close TJ, McGuire PE, Qualset CO, Gill KS (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–686

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Linossier L, Beckert M, Charmet G (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139

    Article  CAS  Google Scholar 

  • Ravel C, Praud S, Canaguier A, Dufour P, Giancola S, Balfourier F, Chalhoub B, Brunel D, Linossier L, Dardevet M, Beckert M, Rousset M, Murigneux A, Charmet G (2007) DNA sequence polymorphisms and their application to bread wheat quality. Euphytica 158:331–336

    Article  CAS  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morrell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Purugganan MD (2003) Candidate genes, quantitative trait loci and functional trait evolution in plants. Int J Plant Sci 164:S7–S20

    Article  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Rooke L, Barro F, Tatham AS, Fido R, Steele S, Bekes F, Gras P, Martin A, Lazzeri PA, Shewry PR, Barcelo P (1999) Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor Appl Genet 99:851–858

    Article  CAS  Google Scholar 

  • Safar J, Bartos J, Janda J, Bellec A, Kubalakova M, Valarik M, Pateyron S, Weiserova J, Tuskova R, Cihalikova J, Vrana J, Simkova H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Dolezel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39:960–968

    Article  PubMed  CAS  Google Scholar 

  • Sangtong V, Moran DL, Chikwamba R, Wang K, Woodman-Clikeman W, Long MJ, Lee M, Scott MP (2002) Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor Appl Genet 105:937–945

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Droz E, Malnoe P, Chatot C, Bonnel E, Metraux JP (2002) Transgenic potato plants expressing oxalate oxidase have increased resistance to oomycete and bacterial pathogens. Potato Res 45:177–185

    Article  CAS  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Peterson JM, Moran DL, Sangtong V, Smith L (2007) A wheat genomic DNA fragment reduces pollen transmission of maize transgenes by reducing pollen viability. Trans Res 16:629–643

    Article  CAS  Google Scholar 

  • Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) QTL for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathol 98:886–893

    Article  CAS  Google Scholar 

  • Shen X, Francki MG, Ohm HW (2006) A resistance-like gene identified by EST mapping and its association with a QTL controlling Fusarium head blight infection on wheat chromosome 3BS. Genome 49:631–635

    Article  PubMed  Google Scholar 

  • Shewry PR, Jones HD (2005) Transgenic wheat; where do we stand after the first 12 years? Ann Appl Biol 147:1–14

    Article  CAS  Google Scholar 

  • Shimamura C, Ohno R, Nakamura C, Takumi S (2006) Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. J Plant Physiol 163:213–219

    Article  PubMed  CAS  Google Scholar 

  • Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, Takumi S, Murai K (2007) Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Phyisiol Plant 130:627–636

    Article  CAS  Google Scholar 

  • Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav M, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwas K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotech 23:75–81

    Article  CAS  Google Scholar 

  • Somers DJ, Kirikpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density mircrosatellite map for bread wheat (Triticum aestivum L.) Genome 109:1105–1114

    CAS  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    Article  PubMed  CAS  Google Scholar 

  • Soreng RJ, Davis JI (1998) Phylogenetics and character evolution in the grass family. The Bot Rev 64:1–47

    Article  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson JP, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chrom Res 15:21–31

    Article  PubMed  CAS  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81:349–354

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Gen Genet 279:213–223

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 498:796–815

    Google Scholar 

  • Tijsterman M, Ketting RF, Plasterk RHA (2002) The genetics of RNA silencing. Ann Rev Genet 36:489–519

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  CAS  Google Scholar 

  • Tosi P, D’Ovidio R, Napier JA, Bekes F, Shewry PR (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into the glutenin polymers. Theor Appl Genet 108:468–476

    Article  PubMed  CAS  Google Scholar 

  • Tosi P, Masci S, Giovangrossi A, D’Ovidio R, Bekes F, Larroque O, Napier J, Shewry P (2005) Modification of the low molecular weight (LMW) glutenin composition of transgenic durum wheat: Effects on glutenin polymer size and gluten functionality. Mol Breed 16:113–126

    Article  CAS  Google Scholar 

  • Trevalla S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol142:6–20

    Article  CAS  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distalfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Uphaus J, Walker E, Shankar M, Golzar H, Loughman R, Francki M, Ohm H (2007) Quantitative trait loci identified for resistance to Stagonospora glume blotch in wheat in the USA and Australia. Crop Sci 47:1813–1822

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang JR, Wei YM, Yan ZH, Zheng YL (2007) Sequence variations and haplotype identification of wheat dimeric alpha-amylase inhibitor genes in einkorn wheats. Biochem Genet 45:803–814

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Xu YY, Han Y, Bao SL, Du JZ, Yuan M, Xu ZH, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress and sensitivity to auxin. Plant Physiol 140:91–101

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060

    Article  PubMed  CAS  Google Scholar 

  • William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319

    Article  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.) Theor Appl Genet 87:70–74

    CAS  Google Scholar 

  • Xu CY, Jing RL, Mao XG, Jia XY, Chang XP (2007b) A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 99:439–450

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007a) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A. 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquili G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat gene VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S et al. (2002). A draft sequence of the rice genome (Oryza sativa L ssp indica) Science 296:79–91

    PubMed  CAS  Google Scholar 

  • Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  • Yue SJ, Li H, Li YW, Zhu YF, Guo JK, Liu YJ, Chen Y, Jia X (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular-weight glutenin subunit by RNA interference. J Cereal Sci 47:153–161

    Article  CAS  Google Scholar 

  • Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A, Malatrasi M, Turuspekov Y, Walia H, Akhunov ED, Kianian P, Otto C, Simons K, Deal KR, Echenique V, Stamova B, Ross K, Butler GE, Strader L, Verhey SD, Johnson R, Altenbach S, Kothari K, Tanaka C, Shah MM, Laudencia-Chingcuanco D, Han P, Miller RE, Crossman CC, Chao S, Lazo GR, Klueva N, Gustafson JP, Kianian SF, Dubcovsky J, Walker-Simmons MK, Gill KS, Dvorák J, Anderson OD, Sorrells ME, McGuire PE, Qualset CO, Nguyen HT, Close TJ (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L). Genetics 168:595–608

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223:698–707

    Article  PubMed  CAS  Google Scholar 

  • Zhou HB, Li SF, Deng ZY, Wang XP, Chen T, Zhang JS, Chen SY, Ling HQ, Zhang AM, Wang DW, Zhang XQ (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Francki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Francki, M.G. (2010). Genomics for Wheat Improvement. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_12

Download citation

Publish with us

Policies and ethics