Skip to main content

Role of Multiple Subband Renormalization in the Electronic Transport of Correlated Oxide Superlattices

  • Conference paper
  • 2366 Accesses

Metallic behavior of band-insulator/ Mott-insulator interfaces was observed in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3 multilayers. Applying a semiclassical perspective to the parallel electronic transport we identify two major ingredients relevant for such systems: (i) the quantum confinement of the conduction electrons (superlattice modulation) leads to a complex, quasi-two dimensional subband structure with both hole- and electron-like Fermi surfaces. (ii) strong electron-electron interaction requires a substantial renormalization of the quasi-particle dispersion. We characterize this renormalization by two sets of parameters, namely, the quasi-particle weight and the induced particle-hole asymmetry of each partially filled subband. In our study, the quasi-particle dispersion is calculated self-consistently as function of microscopic parameters using the slave-boson mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the consequences of strong local correlations on the normal-state free-carrier response in the optical conductivity and on the thermoelectric effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ohtomo, D.A. Muller, J.L. Grazul, and H.Y. Hwang, Nature 419, 378 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  2. N. Nakagawa, H.Y. Hwang, and D.A. Muller, Nature Mat. 5, 204 (2006).

    Article  ADS  CAS  Google Scholar 

  3. S. Okamoto and A.J. Millis, Nature 428, 630 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. S.S.A. Seo et al., Phys. Rev. Lett. 99, 266801 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. M. Takizawa et al., Phys. Rev. Lett. 97, 057601 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. K. Shibuya et al., Jpn. J. Appl. Phys. 43, L1178 (2004).

    Article  ADS  CAS  Google Scholar 

  7. J. Chakhalian et al., Science 318, 1114 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  8. A. Rüegg, S. Pilgram, and M. Sigrist, Phys. Rev. B 75, 195117 (2007).

    Article  ADS  CAS  Google Scholar 

  9. A. Rüegg, S. Pilgram, and M. Sigrist, Phy. Rev. B 77, 245118 (2008).

    Article  ADS  CAS  Google Scholar 

  10. A.B. Pippard Magnetotransport in metals (CambrIDge University Press, 1989).

    Google Scholar 

  11. S. Okamoto, A.J. Millis, and N.A. Spaldin, Phys. Rev. Lett. 97, 056802 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  12. D.R. Hamann, D.A. Muller, and H.Y. Hwang, Phys. Rev. B 73, 195403 (2006).

    Article  ADS  CAS  Google Scholar 

  13. S. Okamoto and A.J. Millis, Phys. Rev. B 70, 241104(R) (2004).

    ADS  Google Scholar 

  14. G. Kotliar and A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  15. R. Frésard and P. Wölfle, Int. J. Mod. Phys. B 6, 237 (1992).

    Google Scholar 

  16. E. Arrigoni and G.C. Strinati, Phy. Rev. B 52 (1995).

    Google Scholar 

  17. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Article  ADS  Google Scholar 

  18. J.K. Freericks, Transport in multilayered nanostructures: the dynamical mean-field approach (Imperial College Press, London, 2006).

    Book  MATH  Google Scholar 

  19. S. Wehrli, D. Poilblanc, and T.M. Rice, Eur. Phys. J. B 23, 345 (2001).

    Article  ADS  CAS  Google Scholar 

  20. W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 4302 (1970).

    Article  ADS  Google Scholar 

  21. T.M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).

    Article  PubMed  ADS  Google Scholar 

  22. G. Beni, Phys. Rev. B 10, 2186 (1974).

    Article  ADS  CAS  Google Scholar 

  23. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).

    Article  ADS  CAS  Google Scholar 

  24. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  ADS  CAS  Google Scholar 

  25. S. Mukerjee and J.E. Moore Appl. Phys. Lett 90, 112107 (2007).

    Article  ADS  CAS  Google Scholar 

  26. H. Ohta et al., Nat. Mat. 6, 129 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Rüegg, A., Sigrist, M. (2009). Role of Multiple Subband Renormalization in the Electronic Transport of Correlated Oxide Superlattices. In: Zlatić, V., Hewson, A.C. (eds) Properties and Applications of Thermoelectric Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2892-1_11

Download citation

Publish with us

Policies and ethics