Skip to main content

Theory of Electronic Transport and Thermoelectricity in Ordered and Disordered Heavy Fermion Systems

  • Conference paper
  • 2383 Accesses

A theory for electronic transport in heavy fermion systems has been developed and applied to the calculation of the temperature dependence of the resistivity and of the thermoelectric power. The dynamical mean-field theory has been used for the periodic Anderson model (PAM) together with the numerical renor-malization group (NRG) as the impurity solver. To investigate also the influence of impurities and disorder, the method has been combined with the coherent potential approximation (CPA) for disordered systems. Considering two distinct local environments of a binary alloy with arbitrary concentration, two types of disorder have been investigated: on the f-sites and on the ligand sites. The temperature and concentration dependence of the thermoelectric power is calculated. The characteristic concentration dependence as well as the order of magnitude of the thermopower are reproduced for metallic heavy-fermion systems and for Kondo insulators. In particular, sign changes of the Seebeck coefficient as function of temperature and concentration are observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Grewe and F. Steglich, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1991), Vol. 14, p. 343.

    Google Scholar 

  2. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

    Article  ADS  CAS  Google Scholar 

  3. P. Scoboria, J. E. Crow, and T. Mihalisin, J. Appl. Phys. 50, 1895 (1979).

    Article  ADS  CAS  Google Scholar 

  4. K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975); H. R. Ott, H. Rudigier, Z. Fisk, J. L. Smith, Physica B 127, 359 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Y. Onuki and T. Komatsubara, J. Magn. Magn. Mat. 63–64, 281 (1987).

    Article  Google Scholar 

  6. C. D. W. Jones, K. A.Regan, F. J. DiSalvo, Phys. Rev. B 58, 16057 (1998).

    Article  ADS  CAS  Google Scholar 

  7. C. D. W. Jones, K. A.Regan, F. J. DiSalvo, Phys. Rev. B 60, 5282 (1999).

    Article  ADS  CAS  Google Scholar 

  8. F. Steglich, in Festkörperprobleme: Advances in Solid State Physics, edited by J. Treusch (Vieweg, Braunschweig, 1977), Vol. 17, p. 319.

    Google Scholar 

  9. H. Schneider, Z. Kletowski, F. Oster, and D. Wohlleben, Solid State Commun. 48, 1093 (1983).

    Article  ADS  CAS  Google Scholar 

  10. D. Jaccard, J. M. Mignot, B. Bellarbi, A. Benoit, H. F. Braun, and J. Sierro, J. Magn. Magn. Mat. 47–48, 23 (1985).

    Article  Google Scholar 

  11. D. Jaccard, A. Basset, J. Sierro, and J. Pierre, J. Low Temp. Phys. 80, 285 (1990).

    Article  ADS  CAS  Google Scholar 

  12. M. Očko, B. Bushinger, C. Geibel, and F. Steglich, Physica B 259–261, 87 (1999).

    Article  Google Scholar 

  13. S. Paschen, B. Wand, G. Sparn, F. Steglich, Y. Echizen, and T. Takabatake, Phys. Rev. B 62, 14912 (2000).

    Article  ADS  CAS  Google Scholar 

  14. G. Mahan, B. Sales, and J. Sharp, Phys. Today 50(3), 42 (1997).

    Article  CAS  Google Scholar 

  15. M. Očko, B. Buschinger, C. Geibel, F. Steglich, Physica B 259–261, 87 (1999).

    Article  Google Scholar 

  16. M. Očko, D. Drobac, B. Buschinger, C. Geibel, F. Steglich, Phys. Rev. B 64, 195106 (2001).

    Article  ADS  CAS  Google Scholar 

  17. P. de V. du Plessis, A. M. Strydom, R. Troć, T. Cichorek, Cz. Marucha, R. P. Gers, J. Phys.: Condens. Matter 11, 9775 (1999).

    Article  ADS  Google Scholar 

  18. C. M. Varma, Y. Yafet, Phys. Rev. B 13, 2950 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 42, 187 (1995).

    Article  ADS  Google Scholar 

  20. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996), for a review on the DMFT.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  21. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  CAS  MathSciNet  Google Scholar 

  22. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

    Article  ADS  Google Scholar 

  23. H. R. Krishna-murthy, J. W. Wilkins, K. G. Wilson, Phys. Rev. B 21, 1003 (1980); 21, 1044 (1980).

    Article  ADS  CAS  Google Scholar 

  24. R. Bulla, T. A. Costi, T. Pruschke, Rev. Mod. Phys 80, 395 (2008).

    Article  ADS  CAS  Google Scholar 

  25. T. Pruschke, R. Bulla, M. Jarrell, Phys. Rev. B 61, 12799 (2000).

    Article  ADS  CAS  Google Scholar 

  26. R. J. Elliott, J. A. Krumhansl, P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).

    Article  ADS  CAS  MathSciNet  Google Scholar 

  27. F. Yonezawa, in: The Structure and Properties of Matter, edited by T. Matsubara, Springer (Berlin, Heidelberg, New York), 1982, Vol. 28, Springer Series in Solid-State Sciences, chap. 11, pp. 383–432.

    Google Scholar 

  28. V. Janiš, D. Vollhardt, Phys. Rev. B 46, 15712 (1992).

    Article  ADS  Google Scholar 

  29. V. Janiš, M. Ulmke, D. Vollhardt, Europhys. Lett. 24, 287 (1993).

    Article  ADS  Google Scholar 

  30. M. Ulmke, V. Janiš, D. Vollhardt, Phys. Rev. B 51, 10411 (1995).

    Article  ADS  CAS  Google Scholar 

  31. P. J. H. Denteneer, M. Ulmke, R. T. Scalettar, G. T. Zimanyi, Physica A 251, 162 (1998).

    Article  CAS  Google Scholar 

  32. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. B 69, 045112 (2004).

    Article  ADS  CAS  Google Scholar 

  33. C. Grenzebach, F. B. Anders, G. Czycholl and Th. Pruschke, Phys. Rev. B 74, 195119 (2006).

    Article  ADS  CAS  Google Scholar 

  34. C. Grenzebach, F. B. Anders, G. Czycholl and Th. Pruschke, Phys. Rev. B 77, 115125 (2008).

    Article  ADS  CAS  Google Scholar 

  35. C. Grenzebach: Transporttheorie für geordnete und ungeordnete Systeme schwerer Fermionen, Thesis (Univ. Bremen), Mensch-und-Buch-Verlag Berlin 2008, ISBN 978-3-86664-504-2.

    Google Scholar 

  36. V. Zlatic, I. Milat, B. Coqblin, G. Czycholl, C. Grenzbach, Phys. Rev. B 68, 104432 (2003).

    Article  ADS  CAS  Google Scholar 

  37. C. Grenzebach, G. Czycholl, Physica B 359–361, 732 (2005).

    Article  CAS  Google Scholar 

  38. V. Zlatic, R. Monnier, J. K. Freericks, Phys. Rev. B 78, 045113 (2008).

    Article  ADS  CAS  Google Scholar 

  39. R. Bulla, Th. Pruschke, and A. C. Hewson, J. Phys.: Condens. Matter 9, 10463 (1997).

    Article  ADS  CAS  Google Scholar 

  40. G. Mahan, Many-Particle Physics (Plenum Press, New York, 1981).

    Google Scholar 

  41. J. M. Luttinger, Phys. Rev. 135, A1505 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Voruganti, A. Golubentsev, and S. John, Phys. Rev. B 45, 13945 (1992).

    Article  ADS  Google Scholar 

  43. G. Czycholl, Theoretische Festkörperphysik, 3rd edition (Springer, Heidelberg, 2007).

    Google Scholar 

  44. G. Czycholl and H. J. Leder, Z. Phys. B: Condens. Matter 44, 59 (1981).

    Article  ADS  CAS  Google Scholar 

  45. A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).

    Article  PubMed  ADS  Google Scholar 

  46. H. Schweitzer and G. Czycholl, Phys. Rev. Lett. 67, 3724 (1991).

    Article  PubMed  ADS  CAS  Google Scholar 

  47. A. Lorek, N. Grewe and F. B. Anders, Solid State Commun. 78, 167 (1991).

    Article  ADS  CAS  Google Scholar 

  48. F. B. Anders and D. L. Cox, Physica B 230–232, 441 (1997).

    Article  Google Scholar 

  49. F. Steglich, B. Buschinger, P. Gegenwart, M. Lohmann, R. Helfrich, C. Langhammer, P. Hellmann, L. Donnevert, S. Thomas, A. Link, et al., J. Phys.: Condens. Matter 8, 9909 (1996).

    Article  ADS  CAS  Google Scholar 

  50. F. B. Anders and M. Huth, Eur. Phys. J. B 19, 491 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Grenzebach, C., Anders, F.B., Czycholl, G. (2009). Theory of Electronic Transport and Thermoelectricity in Ordered and Disordered Heavy Fermion Systems. In: Zlatić, V., Hewson, A.C. (eds) Properties and Applications of Thermoelectric Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2892-1_10

Download citation

Publish with us

Policies and ethics