Skip to main content

Thermophysical Properties of Natural Glasses at the Extremes of the Thermal History Profile

  • Chapter
  • First Online:

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 8))

Abstract

Natural amorphous glassy silicates are widely distributed and are found in quantities that range from micrograms to kilo tonnes and, hence, their occurrence is from microscopic glassy inclusions to “glassy mountains” [1]. These natural glasses have two generic origins which may be generalised as vitreous glasses, formed from the melt state by relatively rapid cooling at cooling rates that inhibit crystal formation, or diagenetic glasses, formed by a dissolution-precipitation mechanism where crystallisation is inhibited by the Ostwald's rule of stepwise petrogenesis [2]. The thermal histories of a range of natural glasses are depicted in the schematic of Fig. 19.1 and vary significantly from the typical conditions used in the glass industry which are optimised between processing speed and energy conservation. In the extremes, tektites like moldavites are formed by extremely fast heating and melting at very high temperatures (> 3,000 K) followed by quenching at extreme cooling rates (≥10 K/s). By contrast the formation of amorphous glasses from mineral diagenesis or biotic processes occurs at much lower temperatures and over longer time periods; the formation of sedimentary opal, for example, occurs at ambient temperatures, it is essentially isothermal, and takes place over long periods of time of the order of months to years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DEGAS:

High vacuum hot extraction gas analysis by mass spectroscopy

GAB:

Great Artesian (Australian) Basin

LVT:

Lunar volcanic theory

Opal-A:

Amorphous opal

Opal-CT:

Cristobalite-tridimite ordered opal

Opal-C:

Cristobalite ordered opal

Opal-AG:

Amorphous gel-like opal

Opal-AN:

Amorphous network-like opal

TIT:

Terrestrial impact theory

TMA:

Thermomechanical analysis

XRD:

X-ray diffraction

References

  1. Heide K (2007) Die Geheimnisse des “gläsernen Bergs”. Forschung 32

    Google Scholar 

  2. Iler RK (1979) The chemistry of silica, solubility, polymerisation, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  3. Heide K, Heide G, Kloess G (2001) Glass chemistry of tektites. Planet Space Sci 49:839–844

    Article  CAS  Google Scholar 

  4. Lange JM (1995) Lausitzer Moldavite und ihre Fundschichten. Schriftenr f Geowiss 3:7–138

    Google Scholar 

  5. Brown LD, Ray AS, Thomas PS (2004) Elemental analysis of Australian amorphous Opals by laser-ablation ICPMS. Neues Jb Miner Monat 2004(9):411–424

    Article  Google Scholar 

  6. Hölzle-Vuynovich A (1992) Petrographische und geochemische Untersuchungen an Schneeflockenobsidianen und verwandtem Material aus den USA, Island und der Osterinsel. Heidelberger geowissenschaftliche Abhandlungen, vol 56. Ruprecht-Karls-Universität Heidelberg, Heidelberg

    Google Scholar 

  7. Ray A, Sriravindrarajah R, Guerbois J-P, Thomas PS, Border S, Ray HN, Haggman J, Joyce P (2007) Evaluation of waste perlite fines in the production of construction materials. J Therm Anal Calorim 88:279–283

    Article  CAS  Google Scholar 

  8. Luft E (1983) Zur Bildung der Moldavite beim Ries-Impakt aus tertiären Sedimenten. Enke Verlag, Stuttgart, p 57

    Google Scholar 

  9. Rost R (1972) Vltaviny a tektity. Academia, Prague, p 241

    Google Scholar 

  10. Thomas PS, Šesták J, Heide K, Fueglein E, Šimon P (2010) Thermal properties of Australian sedimentary opals and Czech moldavites. J Therm Anal Calorim 99:861–867

    Article  CAS  Google Scholar 

  11. Glass BP (1984) Tektites. J Non-Cryst Solids 67:333–344

    Article  CAS  Google Scholar 

  12. Izokh EP (1996) Origin of tektites: an alternative to terrestrial impact theory. Chem Erde 56:458–474

    CAS  Google Scholar 

  13. O’Keefe JA (1976) Tektites and their origin. Elsevier, Amsterdam

    Google Scholar 

  14. O’Keefe JA (1984) Natural glasses. J Non-Cryst Solids 67:1–17

    Article  Google Scholar 

  15. Heide K, Kletti H (2003) Resistance of natural glass. Glass Sci Technol 76:118–124

    CAS  Google Scholar 

  16. Koeberl C, Kluger F, Kiesl W (1986) Trace element correlations as clues to the origin of tektites and impactites. Chem Erde 45:1–21, 1

    CAS  Google Scholar 

  17. Schnetzler CC, Pinson WH Jr (1963) The chemical composition of tektites. In: O’Keefe JA (ed) Tektites. Chicago Press, Chicago, p 101

    Google Scholar 

  18. Bouská V (1993) Natural glasses. Academia, Praha

    Google Scholar 

  19. Arndt J, Rombach N (1976) Derivation of the thermal history of tektites and lunar glasses from their thermal expansions characteristics. In: Proceedings of the 7th Conference on Lunar Science. pp 1123–1141, Houston GCA Supplement 7

    Google Scholar 

  20. Kloess G (2000) Dichtfluktuationen natürlicher Gläser. Habilitation, Jena

    Google Scholar 

  21. Heide G, Müller B (1999) Zur Struktur von Moldavitglas. Schriften Staatl. Museen Min. Geol. Dresden 10:30–33

    Google Scholar 

  22. Kloess G, Heide G (1999) ρ-ρt Geospeedometrie an Tektiten. Schriften Staatl. Museen Min. Geol. Dresden 10:52–54

    Google Scholar 

  23. Heide K, Gerth K, Hartmann E (2000) The detection of an inorganic hydrocarbon formation in silicate melts by means of a direct-coupled-evolved-gas-analysis-system (DEGAS). Thermochim Acta 354:165–172

    Article  CAS  Google Scholar 

  24. Heide K, Schmidt Ch (2003) Volatiles in vitreous basaltic rims, HSDP 2, Big Island, Hawaii. J Non-Cryst Solids 323:97–103

    Article  CAS  Google Scholar 

  25. Jones JB, Sanders JV, Segnit ER (1964) The structure of opal. Nature 4962:991

    Google Scholar 

  26. Darragh PJ, Gaskin AJ, Sanders JV (1976) Opals. Sci Am 234(4):84

    Article  Google Scholar 

  27. McOrist GD, Smallwood A (1997) Trace elements in precious and common opals using neutron activation analysis. J Radioanal Nucl Chem 223:9–15

    Article  CAS  Google Scholar 

  28. Erel E, Aubriet F, Finqueneisel G, Muller JF (2003) Capabilities of laser ablation mass spectrometry in the differentiation of natural and artificial opal gemstones. Anal Chem 75:6422–6429

    Article  CAS  Google Scholar 

  29. Brown LD, Ray AS, Thomas PS (2003) 29Si and 27Al NMR study of amorphous and paracrystalline opals from Australia. J Non-Cryst Solids 332:242–248

    Article  CAS  Google Scholar 

  30. Thomas PS, Smallwood AS, Ray AS, Briscoe BJ, Parsonage D (2008) Nanoindentation hardness of banded Australian sedimentary opal. J Phys D Appl Phys 41:074028

    Article  Google Scholar 

  31. Behr HJ, Behr K, Watkins JJ (2000) Cretaceous microbes–producer of black opal at Lightning Ridge, NSW, Australia. Geological Abstracts No. 59. 15th Australian Geological Convention. Sydney

    Google Scholar 

  32. Pecover SR (1996) A new genetic model for the origin of precious opal. Extended abstracts No. 43. Mesozoic geology of Eastern Australia plate conference. Geo Soc Aust, pp 450–454

    Google Scholar 

  33. Devison B (2004) The origin of precious opal – a new model. Aus Gemmologist 22:50–58

    Google Scholar 

  34. Brown LD, Thomas PS, Ray AS, Prince K (2006) A SIMS study of the transition metal element distribution between bands in banded Australian sedimentary opal from the lightning ridge locality. Neues Jb Miner Monat 182:193–199

    Google Scholar 

  35. Segnit ER, Stevens TJ, Jones JB (1965) The role of water in opal. J Geol Soc Aust 12:211–226

    Article  CAS  Google Scholar 

  36. Langer K, Flörke OW (1974) Near infrared absorption spectra (4000–9000 cm–1) of opals and the role of water in these SiO2.nH2O minerals. Fortschr Mineral 52:17–51

    CAS  Google Scholar 

  37. Brown LD (2005) Characterisation of Australian opals. PhD Thesis, University of Technology, Sydney

    Google Scholar 

  38. Smallwood AG, Thomas PS, Ray AS (2008) Thermal characterisation of Australian sedimentary and volcanic precious opal. J Therm Anal Calorim 92:91–95

    CAS  Google Scholar 

  39. Smallwood AG, Thomas PS, Ray AS (2008) The thermophysical properties of Australian opal. Australian Institute of Mining and Mineralogy Publication Series No. 8, pp 557–560

    Google Scholar 

  40. Banerjee A, Wenzel T (1999) Black opal from honduras. Eur J Mineral 11:401–408

    CAS  Google Scholar 

  41. Caucia F, Ghisoli C, Adamo I, Boiocchi M (2008) Opal-C, Opal-CT and Opal-T from Acari. Peru Aust Gemmologist 23:266–271

    CAS  Google Scholar 

  42. Rondeau B, Fritsch E, Guiraud M, Renac C (2004) Opals from Slovakia (‘Hungarian’ opals): a reassessment of the conditions of formation. Eur J Mineral 16:789–799

    Article  CAS  Google Scholar 

  43. Jones JB, Segnit ER (1971) The nature of opal. I. Nomenclature and constituent phases. J Geol Soc Aust 18:57

    Article  CAS  Google Scholar 

  44. Williams LA, Crerar DA (1985) Silica diagenesis. II: general mechanisms. J Sediment Petrol 55:312–321

    Google Scholar 

  45. Landmesser M (1998) Mobility by metastability: applications. Chem Erde 58:1–22

    CAS  Google Scholar 

  46. Brown LD, Ray AS, Thomas PS, Guerbois JP (2002) Thermal characteristics of Australian sedimentary opals. J Therm Anal Calorim 68:31–36

    Article  CAS  Google Scholar 

  47. Smallwood AG, Thomas PS, Ray AS, Šimon P (2009) A Fickian model for the diffusion of water in Australian sedimentary opal. J Therm Anal Calorim 97:685–688

    Article  CAS  Google Scholar 

  48. Heide K, Woermann E, Ulmer G (2008) Volatiles in pillows of the Mid-Ocean-Ridge-Basalt (MORB) and vitreous basaltic rims. Chem Erde 68:353–368

    Article  CAS  Google Scholar 

  49. Engelhardt Wv, Luft E, Arndt J, Schock H, Weiskirchner W (1987) Origin of moldavites. Geochim Cosmochim Acta 51:1425–1443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thomas, P., Šesták, J., Heide, K., Füglein, E., Šimon, P. (2011). Thermophysical Properties of Natural Glasses at the Extremes of the Thermal History Profile. In: Šesták, J., Mareš, J., Hubík, P. (eds) Glassy, Amorphous and Nano-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2882-2_19

Download citation

Publish with us

Policies and ethics