Skip to main content

Linear Scaling Methods Using Additive Fuzzy Density Fragmentation

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 13))

Abstract

The Additive Fuzzy Density Fragmentation (AFDF) principle provides the basis for the linear scaling Adjustable Density Matrix Assembler (ADMA) method, developed for detailed, ab initio quality macromolecular electron density computations, directed primarily towards protein studies. The same principle is the basis for novel approaches to the local analysis of electron density fragments, such as functional groups and regions surrounding reactive centers in various biomolecules. The basic theoretical developments as well as the implementation of the ADMA and related methods are subject to the conditions represented by the Holographic Electron Density Theorem: in any non-degenerate ground state, any positive volume local part of the electron density contains the complete information about the entire, boundaryless molecule. This represents a limitation on the transferability of molecular fragments, however, by a fuzzy fragmentation, some of the difficulties can be circumvented. Approximate transferability is a viable option if the relations between local and global properties are properly taken into account. Specifically, the interplay between local and global molecular properties, as manifested, for example, by symmetry properties and the topological shape constraints on molecular features has a strong influence on molecular energies. A better understanding of the interactions between local and global features also leads to fragment-based combinatorial quantum chemistry approaches. A general framework for such studies can be formulated based on the insight obtained by macromolecular quantum chemistry computations using the linear scaling ADMA method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  2. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846

    Article  CAS  Google Scholar 

  3. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338–2342

    Article  CAS  Google Scholar 

  4. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories. J Chem Phys 23:2343–2346

    Article  CAS  Google Scholar 

  5. Löwdin P-O (1970) On the orthogonality problem. Adv Quantum Chem 5:185–199

    Article  Google Scholar 

  6. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Math Proc Camb Philol Soc 24:89–110

    Article  CAS  Google Scholar 

  7. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math Proc Camb Philol Soc 24:111–132

    Article  CAS  Google Scholar 

  8. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part III. Term values and intensities in series in optical spectra. Math Proc Camb Philol Soc 24:426–437

    Article  CAS  Google Scholar 

  9. Hartree DR (1929) The wave mechanics of an atom with a non-coulomb central field. Part IV. Further results relating to terms of the optical spectrum. Math Proc Camb Philol Soc 25:310–314

    Article  CAS  Google Scholar 

  10. Fock V (1930) Naeherungsmethode zur Loesing des quantenmechanischen Mehrkoerperproblems. Z Phys 61:126–148

    Article  Google Scholar 

  11. Roothaan CC (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89; ibid. (1960) 32, 179

    Article  CAS  Google Scholar 

  12. Hall GG (1951) The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc Roy Soc London A205:541–552

    Google Scholar 

  13. Pilar FL (1968) Elementary quantum chemistry. McGraw-Hill, New York, NY

    Google Scholar 

  14. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, Mineola, NY

    Google Scholar 

  15. Boys SF (1960) Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys 32:296–299

    Article  CAS  Google Scholar 

  16. Edmiston C, Ruedenberg K (1963) Localized atomic, molecular orbitals. Rev Mod Phys 35:457–464

    Article  CAS  Google Scholar 

  17. Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical LCAO wavefunctions. J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  18. Pipek J, Mezey PG (1988) Dependence of MO shapes on a continuous measure of delocalization, Int J Quantum Chem Symp 22:1–13

    Article  CAS  Google Scholar 

  19. Kryachko ES, Ludena EV (1989) Density functional theory of many-electron systems. Kluwer, Dordrecht

    Google Scholar 

  20. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, NY

    Google Scholar 

  21. Yang W (1991) Direct calculation of electron density in density-functional theory. Phys Rev Lett 66:1438–1441

    Article  CAS  Google Scholar 

  22. Yang W (1991) Direct calculation of electron density in density-functional theory: implementation for benzene and a tetrapeptide. Phys Rev A 44:7823–7826

    Article  CAS  Google Scholar 

  23. Yang W (1992) Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules. J Mol Struct (THEOCHEM) 255:461–479

    Article  Google Scholar 

  24. Lee C, Yang W (1992) The divide-and-conquer density-functional approach: molecular internal rotation and density of states. J Chem Phys 96:2408–2411

    Article  CAS  Google Scholar 

  25. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  26. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA 76:6062–6065

    Article  CAS  Google Scholar 

  27. Levi M (1982) Electron densities in search of hamiltonians. Phys Rev A 26:1200–1208

    Article  Google Scholar 

  28. Levy M (1990) Constrianed-search formulation and recent coordinate scaling in density functional theory. Adv Quantum Chem 21:69–79

    Article  CAS  Google Scholar 

  29. Riess J, Munch W (1981) The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theor Chim Acta 58:295–300

    Article  CAS  Google Scholar 

  30. Mezey PG (1999) The holographic electron density theorem and quantum similarity measures. Mol Phys 96:169–178

    Article  CAS  Google Scholar 

  31. Mezey PG (1998) Generalized chirality and symmetry deficiency. J Math Chem 23:65–84

    Article  CAS  Google Scholar 

  32. Mezey PG (1999) Holographic electron density shape theorem and its role in drug design and toxicological risk assessment. J Chem Inf Comp Sci 39:224–230

    Article  CAS  Google Scholar 

  33. Mezey PG (2001) The holographic principle for latent molecular properties. J Math Chem 30:299–303

    Article  CAS  Google Scholar 

  34. Mezey PG (2001) A uniqueness theorem on molecular recognition. J Math Chem 30:305–313

    Article  CAS  Google Scholar 

  35. Mezey PG (2007) A fundamental relation of molecular informatics: information carrying properties of density functions. CCCC (Collection of Czechoslovak Chemical Communications) 72:153–163 (Volume dedicated to Prof. Koutecky)

    Article  CAS  Google Scholar 

  36. Zadeh LA (1977) Theory of fuzzy sets. In: Encyclopedia of computer science and technology, Marcel Dekker, New York, NY

    Google Scholar 

  37. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic, theory and applications. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  38. Walker PD, Mezey PG (1993) Molecular electron density lego approach to molecule building. J Am Chem Soc 115:12423–12430

    Article  CAS  Google Scholar 

  39. Walker PD, Mezey PG (1994) Ab initio quality electron densities for proteins: a medla approach. J Am Chem Soc 116:12022–12032

    Article  CAS  Google Scholar 

  40. Walker PD, Mezey PG (1994) Realistic, detailed images of proteins and tertiary structure elements: ab initio quality electron density calculations for bovine insulin. Can J Chem 72:2531–2536

    Article  CAS  Google Scholar 

  41. Walker PD, Mezey PG (1995) A new computational microscope for molecules: high resolution medla images of taxol and hiv-1 protease, using additive electron density fragmentation principles and fuzzy set methods. J Math Chem 17:203–234

    Article  CAS  Google Scholar 

  42. Walker PD, Mezey PG (1995) Towards similarity measures for macromolecular bodies: MEDLA test calculations for substituted benzene systems. J Comput Chem 16:1238–1249

    Article  CAS  Google Scholar 

  43. Mezey PG, Walker PD (1997) Fuzzy molecular fragments in drug research. Drug Discov Today (Elsevier Trend Journal) 2:6–11

    Article  Google Scholar 

  44. Mezey PG (1995) Shape analysis of macromolecular electron densities. Struct Chem 6:261–270

    Article  CAS  Google Scholar 

  45. Mezey PG (1995) Macromolecular density matrices and electron densities with adjustable nuclear geometries. J Math Chem 18:141–168

    Article  CAS  Google Scholar 

  46. Mezey PG (1996) Local shape analysis of macromolecular electron densities. In: Leszczynski J (ed) Computational chemistry: reviews and current trends, vol 1. World Scientific Publishing, Singapore, pp 109–137

    Chapter  Google Scholar 

  47. Mezey PG (1996) Functional groups in quantum chemistry. Adv Quantum Chem 27:163–222

    Article  Google Scholar 

  48. Mezey PG (1997) Quantum similarity measures and Löwdin’s transform for approximate density matrices and macromolecular forces. Int J Quantum Chem 63:39–48

    Article  CAS  Google Scholar 

  49. Mezey PG (1997) Computational microscopy: pictures of proteins. Pharmaceutical News 4:29–34

    CAS  Google Scholar 

  50. Mezey PG (1997) Quantum chemistry of macromolecular shape, Int Rev Phys Chem 16:361–388

    Article  CAS  Google Scholar 

  51. Mezey PG (1998) A crystallographic structure refinement approach using ab initio quality additive fuzzy density fragments. Adv Molec Structure Res 4:115–149

    Article  CAS  Google Scholar 

  52. Mezey PG (1999) Combinatorial aspects of biomolecular shape analysis. Bolyai Soc Math Stud 7:323–332

    Google Scholar 

  53. Mezey PG (1999) Relations between computational and experimental engineering of molecules from molecular fragments. Molec Eng 8:235–250

    Article  Google Scholar 

  54. Mezey PG (1999) Local electron densities and functional groups in quantum chemsitry. In: Surjan PR (ed) Correlation and localization. Topics in current chemistry, vol. 203. Springer, Heidelberg;Berlin, New York, NY, pp 167–186

    Chapter  Google Scholar 

  55. Mezey PG (2000) Transferability, adjustability, and additivity of fuzzy electron density fragments. In: Mezey PG, Robertson B (eds) Electron, spin, and momemtum densities and chemical reactivity. Kluwer Academic, Dordrecht, The Netherlands, pp 45–69

    Google Scholar 

  56. Mezey PG (2001) Computational aspects of combinatorial quantum chemistry. J Comput Methods Sci Eng (JCMSE) 1:99–106

    CAS  Google Scholar 

  57. Exner TE, Mezey PG (2002) A comparison of nonlinear transformation methods for electron density approximation. J Phys Chem A 106:5504–5509

    Article  CAS  Google Scholar 

  58. Exner TE, Mezey PG (2002) Ab initio quality electrostatic potentials for proteins: an application of the ADMA approach. J Phys Chem A 106:11791–11800

    Article  CAS  Google Scholar 

  59. Exner TE, Mezey PG (2003) Ab initio quality properties for macromolecules using the ADMA approach. J Comput Chem 24:1980–1986

    Article  CAS  Google Scholar 

  60. Exner TE, Mezey PG (2004) The field-adapted ADMA approach: introducing point charges. J Phys Chem 108:4301–4309

    Article  CAS  Google Scholar 

  61. Szekeres Zs, Exner TE, Mezey PG (2005) Fuzzy fragment selection strategies, basis set dependence, and HF – DFT comparisons in the applications of the ADMA method of macromolecular quantum chemistry. Int J Quantum Chem 104:847–860

    Article  CAS  Google Scholar 

  62. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  63. Mezey PG (1990) Topological quantum chemistry. In: Weinstein H, Naray-Szabo G (eds) Reports in molecular theory, CRC Press, Boca Raton

    Google Scholar 

  64. Mezey PG (1990) Three-dimensional topological aspects of molecular similarity. In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity, Wiley, New York, NY

    Google Scholar 

  65. Mezey PG (1995) Density domain bonding topology and molecular similarity measures. In: Sen K (ed) Molecular similarity, topics in current chemistry, vol. 173. Springer, Heidelberg

    Google Scholar 

  66. Mezey PG (1995) Methods of molecular shape-similarity analysis and topological shape design. In: Dean PM (ed) Molecular similarity in drug design, Chapman & Hall–Blackie Publishers, Glasgow

    Google Scholar 

  67. Furka A (1982) Notarized Notes. see http://www.win.net/kunagota, http://szerves.chem.elte.hu/furka

  68. Furka A, Sebestyen F, Asgedom M, Dibo G (1988) Cornucopia of peptides by synthesis. Abstracts 14th International Congress Biochemistry, Prague, Czechoslovakia 5:47–52

    Google Scholar 

  69. Furka A, Sebestyen F, Asgedom M, Dibo G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Peptide Protein Res 37:487–493

    Article  CAS  Google Scholar 

  70. Furka A (2002) Combinatorial chemistry: 20 years on…. Drug Discov Today 7:1–7

    Google Scholar 

  71. Darvas F, Dorman G, Urge L, Szabo I, Ronai Z, Sasvari-Szekely M (2001) Combinatorial chemistry. Facing the challenge of chemical genomics. Pure Appl Chem 73:1487–1498

    Article  CAS  Google Scholar 

  72. Darvas F, Dorman G, Papp A (2000) Diversity measures for enhancing ADME admissibility of combinatorial libraries. J Chem Inf Comput Sci 40:314–322

    Article  CAS  Google Scholar 

  73. Jones RV, Godorhazy L, Varga N, Szalay D, Urge L, Darvas F (2006) Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis. J Comb Chem 8:110–116

    Article  CAS  Google Scholar 

  74. Darvas F, Keseru G, Papp A, Dorman G, Urge L, Krajcsi P (2002) In silico ex silico ADME approaches for drug discovery. Curr Top Med Chem 2:1287–1304

    Article  CAS  Google Scholar 

  75. Mezey PG (1987) Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

  76. Mezey PG (1993) Shape in chemistry: an introduction to molecular shape and topology. VCH Publishers, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Mezey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mezey, P.G. (2011). Linear Scaling Methods Using Additive Fuzzy Density Fragmentation. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_6

Download citation

Publish with us

Policies and ethics