Skip to main content

Stretch-Activated Channels in the Heart: Contribution to Cardiac Performance

  • Chapter
  • First Online:

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

Stretch-activated ion channels are widely expressed in most cell types and play an important role in a variety of normal cell functions, including volume regulation and length detection. In the heart, transduction of mechanical energy into cellular responses is an essential component of cardiac function. The heart is passively stretched, and actively shortens in every cardiac cycle; in addition, longer-term changes in volume occur during exercise, and in diseases such as heart failure. In this article, we discuss the importance of stretch-activated ion channels as mechano-transducers in the heart, with emphasis on their contribution to the regulation of contractile performance. As well, the role of stretch-activated channels in modifying the electrical activity of the heart is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen DG. (1977). On the relationship between action potential duration and tension in cat papillary muscle. Cardiovascular Research 11, 210–218.

    Article  CAS  PubMed  Google Scholar 

  • Allen DG and Kentish JC. (1985). The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology 17, 821–840.

    Article  CAS  PubMed  Google Scholar 

  • Allen DG and Kurihara S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. Journal of Physiology 327, 79–94.

    CAS  PubMed  Google Scholar 

  • Allen DG, Nichols CG and Smith GL. (1988). The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. Journal of Physiology 406, 359–370.

    CAS  PubMed  Google Scholar 

  • Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC and Cingolani HE. (1999). Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circulation Research 85, 716–722.

    CAS  PubMed  Google Scholar 

  • Avettev AS and Navaratnam V. (1978). The T-tubule system in the specialized and general myocardium of the rat. Journal of Anatomy 127, 125–140.

    Google Scholar 

  • Bainbridge FA. (1915). The influence of venous filling upon the rate of the heart. Journal of Physiology 50, 65–84.

    CAS  PubMed  Google Scholar 

  • Baumgarten CM and Clemo HF. (2003). Swelling-activated chloride channels in cardiac physiology and pathophysiology. Progress in Biophysics and Molecular Biology 82, 25–42.

    Article  CAS  PubMed  Google Scholar 

  • Belus A and White E. (2002). Effects of streptomycin sulphate on ICaL, IKr and IKs in guinea-pig ventricular myocytes. European Journal of Pharmacology 445, 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Belus A and White E. (2003). Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. Journal of Physiology 546, 501–509.

    Article  CAS  PubMed  Google Scholar 

  • Benham CD. (2005). Simple recipe for blocking ion channels. Nature Biotechnology 10, 1234–1235.

    Article  CAS  Google Scholar 

  • Bett GC and Sachs F. (2000). Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. Journal of Membrane Biology 173, 255–263.

    Article  CAS  PubMed  Google Scholar 

  • Blinks JR. (1956). Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. American Journal of Physiology 186, 299–303.

    CAS  PubMed  Google Scholar 

  • Blinks JR, Endoh M. (1986). Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73, 11185–11198.

    Google Scholar 

  • Blount P, Li Y, Moe PC and Iscla I. (2008). Mechanosensitive channels gated by membrane tension: Bacteria and beyond, Vol. 1. Springer, New York, 71–101.

    Google Scholar 

  • Bluhm WF and Lew WYW. (1995). Sarcoplasmic reticulum in cardiac length-dependent activation in rabbits. American Journal of Physiology 269, H965–H972.

    CAS  PubMed  Google Scholar 

  • Bode F and Franz MR. (2001). Tarantula peptide inhibits atrial fibrillation. Nature 409, 35.

    Article  CAS  PubMed  Google Scholar 

  • Bode F, Katchman A, Woosley RL and Franz MR. (2000). Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation 101, 2200–2205.

    CAS  PubMed  Google Scholar 

  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK and Sachs F. (2007). Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49, 249–270.

    Article  CAS  PubMed  Google Scholar 

  • Browe DM and Baumgarten CM. (2003). Stretch of β1 integrin activates an outwardly-rectifying chloride current via FAK and Src in rabbit ventricular myocytes. Journal of General Physiology 122, 689–702.

    Article  CAS  PubMed  Google Scholar 

  • Browe DM and Baumgarten CM. (2004). Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl current elicited by β1 integrin stretch in rabbit ventricular myocytes. Journal of General Physiology 124, 273–287.

    Article  CAS  PubMed  Google Scholar 

  • Burkhoff D, de Tombe PP, Hunter WC and Kass DA. (1991). Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. American Journal of Physiology 260, H569–H578.

    CAS  PubMed  Google Scholar 

  • Bustamante JO, Ruknudin A and Sachs F. (1991). Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. Journal of Cardiovascular Pharmacology 17, S110–S113.

    Article  PubMed  Google Scholar 

  • Calaghan S and White E. (2004). Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. Journal of Physiology 559, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Calaghan SC, Colyer J and White E. (1999). Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in isolated ferrit papillary muscle. Pflügers Archive 437, 780–782.

    Article  CAS  Google Scholar 

  • Caldiz CI, Garciarena CD, Dulce RA, Novaretto LP, Yeves, Alejandra M., Ennis IL, Cingolani HE, Chiappe de Cingolani G and Perez GN. (2007). Mitochondrial reactice oxygen species activate the slow force response to stretch in feline myocardium. Journal of Physiology 584, 895–905.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell RA, Clemo HF and Baumgarten CM. (1998). Using gadolinium to identify stretch-activated channels: technical considerations. American Journal of Physiology 275, C619–C621.

    CAS  PubMed  Google Scholar 

  • Calkins H, Levine JH and Kass DA. (1991). Electrophysiological effect of varied rate and extent of acute in vivo left ventricular load increase. Cardiovascular Research 25, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Chen DB, Li SM, Qian XX, Moon C and Zheng J. (2005). Tyrosine phosphorylation of caveolan 1 by oxidative stress is reversible and dependent on the c-src tyrosine kinase but not mitogen-activated protein kinase pathways in placental artery endothelial cells. Biology of Reproduction 73, 761–772.

    Article  CAS  PubMed  Google Scholar 

  • Chiang C-S, Anishkin A and Sukharev S. (2004). Gating of the large mechanosensitive channel in situ: Estimation of the spatial scale of the transition from channel population responses. Biophysical Journal 86, 2846–2861.

    Article  CAS  PubMed  Google Scholar 

  • Chuck LH and Parmley WW. (1980). Caffeine reversal of length-dependent changes in myocardial contractile state in the cat. Circulation Research 47, 592–598.

    CAS  PubMed  Google Scholar 

  • Cingolani HE, Alvarez BV, Ennis IL and Camilión de Hurtado MC. (1998). Stretch-induced akalanization of feline papillary muscle: an autocrine-paracrine system. Circulation Research 83, 775–780.

    CAS  PubMed  Google Scholar 

  • Cooper P, Lei M, Cheng L-X and Kohl P. (2000). Axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. Journal of Applied Physiology 89, 2099–2104.

    CAS  PubMed  Google Scholar 

  • Cooper PJ and Kohl P. (2005). Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Annals of the New York Academy of Sciences 1047, 324–335.

    Article  PubMed  Google Scholar 

  • Corey DP. (2003). New TRP channels in hearing and mechanosensation. Neuron 39, 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Craelius W, Chen V and El-Sherif N. (1988). Stretch-activated ion channels in ventricular myocytes. Bioscience Reports 8, 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Ducret T, Vandebrouck C, Cao ML, Lebacq J and Gailly P. (2006). Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. Journal of Physiology 575, 913–924.

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty AF and Franzini-Armstrong C. (1975). The relative contributions of the folds and caveolae to the surface membrane of skeletal muscle fibres at different lengths. Journal of Physiology 250, 513–539.

    CAS  PubMed  Google Scholar 

  • Dyachenko V and Isenberg G. (2007). Ventricular myocytes: deformation induced sarcomee misalignment modulates TRPC6 and KIR2.3 channels. In Proceedings of the 4th International Conference on Cardiac Mechano-Electric Feedback, pp. 84.

    Google Scholar 

  • Dyachenko V, Husse B, Rueckschloss U, Isenberg G. (2009a). Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45, 38–54.

    Google Scholar 

  • Dyachenko V, Rueckschlos U, Isenberg G. (2009b). Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium 45, 55–64.

    Google Scholar 

  • Eisner DA, Choi HS, Díaz ME, O’Neill SC and Trafford AW. (2000). Integrative analysis of calcium cycling in cardiac muscle. Circulation Research 87, 1087–1094.

    CAS  PubMed  Google Scholar 

  • Fabiato A and Fabiato F. (1975). Dependence of the contractile activation of skinned cardiac cells on sarcomere length. Nature 256, 54–56.

    Article  CAS  PubMed  Google Scholar 

  • Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH and Rae JL. (1999). A mechanosensitive calcium channels in human intestinal smooth muscle cells. Gastroenterology 117, 900–905.

    Article  CAS  PubMed  Google Scholar 

  • Franco-Obregon A and Lansman JB. (2002). Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. Journal of Physiology 539, 391–407.

    Article  CAS  PubMed  Google Scholar 

  • Frank O. (1895). Zur dynamik des hersmuskels. Zeitschrift für Biologie 32, 370–447.

    Google Scholar 

  • Franz MR, Burkhoff D, Yue DT and Sagawa K. (1989). Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovascular Research 23, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Franz MR, Cima R, Wang D, Profitt D and Kurz R. (1992). Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86, 968–978.

    CAS  PubMed  Google Scholar 

  • Fukuda N and Granzier HL. (2005). Titan/connectin-based modulation of the Frank-Starling mechanism of the heart. Journal of Muscle Research and Cell Motility 26, 319–323.

    Article  CAS  PubMed  Google Scholar 

  • Garciarena CD, Caldiz CI, Correa MV, Schinella GR, Mosca SM, Chiappe de Cinglani GE, Cingolani HE, Ennis IL. (2008) Na+/H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action. Journal of Applied Physiology 105, 1706–1713.

    Google Scholar 

  • Gervásio OL, Whitehead NP, Yeung EW, Phillips WD and Allen DG. (2008). TRPC1 binds to caveolan-3 and is regulated by Src kinase -role in duchenne muscular dystrophy. Journal of Cell Science 121, 2246–2255.

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF and Julian FJ. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184, 170–192.

    CAS  PubMed  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Rso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP and Honoré E. (2008). Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflügers Archive 455, 1097–1103.

    Article  CAS  Google Scholar 

  • Gu CX, Juranka PF and Morris CE. (2001). Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophysical Journal 80, 2678–2693.

    Article  CAS  PubMed  Google Scholar 

  • Guharay F and Sachs F. (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. Journal of Physiology 352, 685–701.

    CAS  PubMed  Google Scholar 

  • Hagiwara N, Masuda H, Shoda M and Irisawa H. (1992). Stretch-activated anion currents of rabbit cardiac myocytes. Journal of Physiology 456, 285–302.

    CAS  PubMed  Google Scholar 

  • Hamill OP and Martinac B. (2001). Molecular basis of mechanotransduction in living cells. Physiological Reviews 81, 685–740.

    CAS  PubMed  Google Scholar 

  • Hamill OP, Neher ME, Sakmann B and Sigworth FJ. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archive 391, 85–100.

    Article  CAS  Google Scholar 

  • Hansen DE, Craig CS and Hondeghem LM. (1990). Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanelectrical feedback. Circulation 81, 1094–1105.

    CAS  PubMed  Google Scholar 

  • Hibberd MG and Jewell BR. (1982). Calcium- and length-dependent force production in rat ventricular muscle. Journal of Physiology 329, 527–540.

    CAS  PubMed  Google Scholar 

  • Hongo K, Pascarel C, Cazorla O, Gannier F, Le Guennec J-Y and White E. (1997). Gadolinium blocks the delayed rectifier potassium current in isolated guinea-pig ventricular myocytes. Experimental Physiology 82, 647–656.

    CAS  PubMed  Google Scholar 

  • Hongo K, White E, Le Guennec J-Y and Orchard CH. (1996). Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. Journal of Physiology 491, 609–619.

    CAS  PubMed  Google Scholar 

  • Hu H and Sach F. (1997). Stretch-activated ion channels in the heart. Journal of Molecular and Cellular Cardiology 29, 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  • Hu H and Sachs F. (1996). Mechanically activated currents in chick heart cells. Journal of Membrane Biology 154, 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I and Kamkin A. (2003). Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Progress in Biophysics and Biophysical Chemistry 82, 43–56.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva G and Isenberg G. (2000). Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovascular Research 48, 409–420.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I and Isenberg G. (2003a). Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflügers Archive 446, 220–231.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner K-D, Bohm J, Theres H, Günther J and Scholz H. (2003b). Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers Archive 446, 339–346.

    CAS  Google Scholar 

  • Kentish JC and Wrzosek A. (1998). Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. Journal of Physiology 506, 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Kim D. (1992). A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. Journal of General Physiology 100, 1021–1040.

    Article  CAS  PubMed  Google Scholar 

  • Kim D. (1993). Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circulation Research 72, 225–231.

    CAS  PubMed  Google Scholar 

  • Kohl P, Hunter P and Noble D. (1999). Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology 71, 91–138.

    Article  CAS  PubMed  Google Scholar 

  • Kondratev D, Christ A and Gallitelli MF. (2005). Inhibition of the Na+-H+ exchanger with cariporide abolishes stretch-induced calcium but not sodium accumulation in mouse ventricular myocytes. Cell Calcium 37, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Lab MJ. (1978a). Depolarization produced by mechanical changes in normal and abnormal myocardium. Journal of Physiology 284, 143P–144P.

    CAS  PubMed  Google Scholar 

  • Lab MJ. (1978b). Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circulation Research 42, 519–528.

    CAS  PubMed  Google Scholar 

  • Lacampagne A, Gannier F, Argibay JA, Garnier D and Le Guennec JY. (1994). The stretch-activated channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochimica et Biophysica Acta 1191, 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Langton PD. (1993). Calcium currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. Journal of Physiology 471, 1–11.

    CAS  PubMed  Google Scholar 

  • Le Guennec JY, White E, Gannier F, Argibay JA and Garnier D. (1991). Stretch-induced increase of resting intracellular calcium concentration in single guinea-pig ventricular myocytes. Experimental Physiology 76, 975–978.

    PubMed  Google Scholar 

  • Leeson TS. (1980). T-tubules, couplings and myofibrillar arrangements in rat atrial myocardium. Acta Anatomica (Basel) 108, 374–388.

    CAS  PubMed  Google Scholar 

  • Lew WYW. (1993). Mechanisms of volume-induced increase in left ventricular contractility. American Journal of Physiology 265, H1778–H1786.

    CAS  PubMed  Google Scholar 

  • Li GR and Baumgarten CM. (2001). Modulation of cardiac Na+ current by gadolinium, a blocker of stretch-induced arrhythmias. American Journal of Physiology 280, H272–H279.

    CAS  PubMed  Google Scholar 

  • Li W, Kohl P and Trayanova N. (2004). Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. Journal of Molecular Histology 35, 679–686.

    Article  PubMed  Google Scholar 

  • Li XT, Dyachenko V, Zuzarte M, Putzke C, Preisig-Müller R, Isenberg G and Daut J. (2006). The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovascular Research 69, 86–97.

    Article  CAS  Google Scholar 

  • Link M, Wang P, VanderBrink BA, Avelar E, Pandian NG, Maron BJ and Estes NA. (1999). Selective activation of the K+-ATP channels is a mechanism by which sudden death is produced by low-energy chest-wall impact (commotio cordis). Circulation 100, 413–418.

    CAS  PubMed  Google Scholar 

  • Luers C, Fialka F, Elgner A, Zhu D, Kochskamper J, von Lewinski D, Pieske, B. (2005). Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium: -a mechanism for the slow force response. Cardiovascular Research 68, 454–463.

    Google Scholar 

  • Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JZ and Farrugia G. (2002). α1C(Cav1.2) L-type calcium channel mediates mechanosensitive calcium regulation. American Journal of Physiology 283, C1001–C1008.

    CAS  PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B and Hamill OP. (2005). TRPC1 forms the stretch-activated cation channels in vertebrate cells. Nature Cell Biology 7, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Martinac B and Kloda A. (2003). Evolutionary origins of mechanosensitive ion channels. Progress in Biophysics and Molecular Biology 82, 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Hagiwara N, Shoda M, Kasanuki H and Hosoda S. (1996). Enhancement of the L-type Ca2+ current by mechanical stimulation in single rabbit cardiac myocytes. Circulation Research 78, 650–659.

    CAS  PubMed  Google Scholar 

  • Morris C and Laitko U. (2005). The mechanosensitivity of voltage-gated channels may contribute to cardiacmechano-electric feedback. Elsevier Saunders, Philadelphia, pp. 42–52.

    Google Scholar 

  • Morris CE and Juranka PF. (2007). Nav channel mechanosensitivity: Activation and inactivation accelerate reversibly with stretch. Biophysical Journal 93, 822–833.

    Article  CAS  PubMed  Google Scholar 

  • Morris CE and Sigurdson WJ. (1988). Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243, 807–809.

    Article  Google Scholar 

  • Nesbitt A, Cooper PJ and Kohl P. (2001). Rediscovering commotio cordis. Lancet 357, 1195–1197.

    Article  CAS  PubMed  Google Scholar 

  • Niederer SA and Smith NP. (2007). A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophysical Journal 92, 4030–4044.

    Article  CAS  PubMed  Google Scholar 

  • Ninio DM and Saint DA. (2008). The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Progress in Biophysics and Molecular Biology 97, 401–416.

    Article  CAS  PubMed  Google Scholar 

  • Parmley WW and Chuck L. (1973). Length-dependent changes in myocardial contractile state. American Journal of Physiology 224, 1195–1199.

    CAS  PubMed  Google Scholar 

  • Patel AJ and Honoré E. (2001). Properties and modulation of mammalian 2P domain K+ channels. Trends in Neuroscience 24, 339–346.

    Article  CAS  Google Scholar 

  • Patterson S and Starling EH. (1914). On the mechanical factors which determine the output of the ventricles. Journal of Physiology 48, 357–379.

    CAS  PubMed  Google Scholar 

  • Penefsky ZA and Hoffman BF. (1963). Effects of stretch on mechanical and electrical properties of cardiac muscle. American Journal of Physiology 204, 433–438.

    Google Scholar 

  • Pérez NG, de Hurtado MC and Cingolani HE. (2001). Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circulation Research 88, 376–382.

    PubMed  Google Scholar 

  • Ruknudin A, Sachs F and Bustamante JO. (1993). Stretch-activated ion channels in tissue-cultured chick heart. American Journal of Physiology – Heart Circulation Physiology 264, H960-H972.

    CAS  Google Scholar 

  • Sadoshima J and Izumo S. (1993). Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. The EMBO Journal 12, 1681–1692.

    CAS  PubMed  Google Scholar 

  • Sadoshima J, Takahashi T, Jahn L and Izumo S. (1992). Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. In Proceedings of the National Academy of Science USA, pp. 9905–9909.

    Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS and Izumo S. (1993). Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Mitsuiye T and Noma A. (1992). Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Japanese Journal of Physiology 42, 957–970.

    Article  CAS  PubMed  Google Scholar 

  • Sato R and Koumi S-I. (1998). Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. Journal of Membrane Biology 163, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Soeller C and Cannell MB. (1999). Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circulation Research 84, 266–275.

    CAS  PubMed  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J and Gill DL. (2006). A common mechanism underlies the stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Science USA 103, 16586–16591.

    Article  CAS  Google Scholar 

  • Steele DS and Smith GL. (1993). Effects of muscle length on diastolic [Ca2+]i in isolated guinea-pig ventricular trabeculae. Journal of Physiology 467, 328P.

    Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM and Sachs F. (2000). Identification of a peptide toxin from grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. Journal of General Physiology 115, 583–598.

    Article  CAS  PubMed  Google Scholar 

  • Suchyna TM, Tape SE, Koeppe II RE, Andersen OS, Sachs F and Gottlied PA. (2004). Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Taberean IV, Juranka P and Morris CE. (1999). Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophysical Journal 77, 758–774.

    Article  Google Scholar 

  • Takagi S, Miyazaki T, Moritani K, Miyoshi S, Furukawa Y, Ito S and Ogawa S. (1999). Gadolinium suppresses stretch-induced increases in the differences in epicardial and endocardial monophasic action potential durations and ventricular arrhythmias in dogs. Japanese Circulation Journal 63, 296–302.

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Cederdahl JE and Bers DM. (1991). Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell Tissue Research 264, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Trafford AW, Díaz ME and Eisner DA. (1998). Stimulation of Ca-induced Ca release only transiently increases the systolic Ca transient: measurements of Ca fluxes and sarcoplasmic reticulum Ca. Cardiovascular Research 37, 710–717.

    Article  CAS  PubMed  Google Scholar 

  • Tseng G. (1992). Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. American Journal of Physiology 262(31), C1056–C1068.

    CAS  PubMed  Google Scholar 

  • Tucci PJ, Bregagnollo EA, Spadaro J, Cicogna AC and Riberiro MC. (1984). Length dependence of activation studied in the isovolumic blood-perfused dog heart. Circulation Research 55, 59–66.

    CAS  PubMed  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H and Gailly P. (2002). Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. Journal of Cell Biology 158, 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Rees SA, Wright AR and Powell T. (1996). Cell swelling and ion transport pathways in cardiac myocytes. Cardiovascular Research 32, 85–97.

    CAS  PubMed  Google Scholar 

  • Vila Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand J-L and Sollott SJ. (2001). Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nature Cell Biology 3, 867–873.

    Article  CAS  Google Scholar 

  • von Anrep G. (1912). On the part played by the suprarenals in the normal vascular reactions of the body. Journal of Physiology 45, 307–317.

    Google Scholar 

  • von Lewinski D, Stumme B, Fialka F, Luers C and Pieske B. (2004). Functional relevance of the stretch-dependent slow force response in failing human myocardium. Circulation Research 94, 1392–1398.

    Article  CAS  Google Scholar 

  • Wang N, Butler JP and Ingber DE. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127.

    Article  CAS  PubMed  Google Scholar 

  • Ward M-L, Williams IA, Cooper PJ, Chu Y, Ju Y-K and Allen DG. (2008). Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Progress in Biophysics and Molecular Biology 97, 232–249.

    Article  CAS  PubMed  Google Scholar 

  • White E. (2006). Mechanosensitive channels: therapeutic targets in the myocardium? Current Pharmaceutical Design 12, 3645–3663.

    Article  CAS  PubMed  Google Scholar 

  • White E, Boyett MR and Orchard CH. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. Journal of Physiology 482, 93–107.

    CAS  PubMed  Google Scholar 

  • White E, Le Guennec J, Nigretto J, Gannier F, Argibay J and Garnier D. (1993). The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiology 78, 65–78.

    CAS  PubMed  Google Scholar 

  • Winegar BD, Haws CM and Lansman JB. (1996). Subconductance block of single mechanosensitive ion channels in skeletal fibres by aminoglycoside antibiotics. Journal of General Physiology 107, 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Xu SZ and Beech DJ. (2001). TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circulation Research 88, 84–87.

    Article  CAS  PubMed  Google Scholar 

  • Yang XC and Sachs F. (1989). Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  • Yeung EW, Head SI and Allen DG. (2003). Gadolinium reduces the short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. Journal of Physiology 552, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Zabel M, Koller BS, Sachs F and Franz MR. (1996). Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovascular Research 32, 120–130.

    CAS  PubMed  Google Scholar 

  • Zeng T, Bett GC and Sachs F. (2000). Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology 278, H548–H557.

    CAS  PubMed  Google Scholar 

  • Zhang YH and Hancox JC. (2000). Gadolinium inhibits Na+-Ca2+ exchanger current in guinea-pig isolated ventricular myocytes. British Journal of Pharmacology 130, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK and Earm YE. (2000). Stretch-activated and background non-selective cation channels in rat atrial myocytes. Journal of Physiology 523, 607–619.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by the National Health and Medical Research Council of Australia. M-L Ward gratefully acknowledges financial support from the P. J. Smith NZ Freemason’s Travelling Fellowship. The authors would also like to thank Dr Patricia Cooper for comments and discussion on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Louise Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ward, ML., Allen, D.G. (2010). Stretch-Activated Channels in the Heart: Contribution to Cardiac Performance. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_6

Download citation

Publish with us

Policies and ethics