Skip to main content

Ageing Degradation of Concrete Dams Based on Damage Mechanics Concepts

  • Conference paper

A numerical approach is presented in this paper for the analysis of large concrete dams due to ageing degradation, based on damage mechanics concepts. The proposed method can be used to analyse the seismic responses of aged concrete dams by combining techniques such as degradation evaluation methods, damage mechanics, finite element/boundary element methods. The effect of ageing degradation is taken into account by introducing a degradation factor into formulations of damage mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadi M. T., Izadinia M. and Bachmann H. (2001). A discrete crack joint model for nonlinear dynamic analysis of concrete arch dam. Computers and Structures, 79(4): 403–420.

    Article  Google Scholar 

  • ANCOLD (1992). Status of dam safety in Australia. ANCOLD Bulletin, 91: 9–29.

    Google Scholar 

  • Bazant Z. P. and Lin F. B. (1988). Non-local smeared cracking model for concrete fracture. Journal of Structural Engineering, ASCE, 114(11): 2493–2510.

    Article  Google Scholar 

  • Boros-Meinike D. and Jankowski W. (2003). A monitoring-based assessment of the ageing process of selected Polish dams. Proc. 21 st ICOLD Congress on Large Dams, Q 82, R 1, Montreal, Canada.

    Google Scholar 

  • Braverman J. I., Miller C. A. C., Hofmayer H., Ellingwood B. R., Naus D. J., and Chang T. Y. (2004). Degradation assessment of structures and passive components at nuclear power plant. Nuclear Eng. Design, 228(1–3): 283–304.

    Article  Google Scholar 

  • Corns C. F., Jansen R. B. and Lombardi G. (1988). Concrete dam performance and remedial measures. Advanced Dam Engineering for Design, Construction, and Rehabilitation (Editor: R.B. Robert), 578–608.

    Google Scholar 

  • Ellingwood B. R. (1998). Issues related to structural ageing in probabilistic risk assessment of nuclear power plant. Reliability Eng. System Safety, 62(3): 171–183.

    Article  Google Scholar 

  • Enright M. P., Frangopol D. M. and Hearn G. (1996). Degradation of reinforced concrete bridges under aggressive conditions. Materials for the New Millennium, ASCE (Editor: K. P. Chong), 2: 978–987.

    Google Scholar 

  • Ghrib F. and Tinawi R. (1995). An application of damage mechanics for seismic analysis of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 24(2): 157–173.

    Article  Google Scholar 

  • Horii H. and Chen S. C. (2003). Computational fracture analysis of concrete gravity dams by crack-embedded elements — Toward an engineering evaluation of seismic safety. Eng. Fracture Mech., 70(7–8): 1029–1045.

    Article  Google Scholar 

  • Hrabowski W., Urbanski A. and Konwerska-Habowska J. (2003). In situ investigation and numerical analysis of thermal cracking in Zatonie Dam. Proc. 21 st ICOLD Congress on Large Dams, Q 82, R 2, Montreal, Canada.

    Google Scholar 

  • ICOLD (1994). Ageing of dams and appurtenant works. Bulletin 93, International Commission on Large Dams.

    Google Scholar 

  • Jabarooti M. R. and Golabtoonchi I. (2003). Alkali-aggregate reactivity in south-east of Iran. Proc. 21 st ICOLD Congress on Large Dams, Q 82, R 5, Montreal, Canada.

    Google Scholar 

  • Kachanov L. M. (1982). Continuum model of medium with crack. J. Eng. Mech., ASCE, 106(5): 1039–1081.

    Google Scholar 

  • Karihaloo B. L. and Santhikumar S. (1995). Application of visco-elastic tension-softening constitutive model to cracked and ageing concrete. Construction and Building Materials, 13(1–2): 15–21.

    Google Scholar 

  • Lackner R. and Mang H. A. (2001). Adaptivity in computational mechanics of concrete structures. Int. J. Num. Anal. Methods Geomech., 25(7): 711–739.

    Article  MATH  Google Scholar 

  • Lubliner J., Oliver, J., Oller S. and Onate E. (1989). A plastic damage model for concrete. Int. J. Solids and Structures, 25(3): 299–326.

    Article  Google Scholar 

  • Mori Y. and Ellingwood B. R. (1993). Reliability-based service-life assessment of ageing concrete structures. J. Struc. Eng., ASCE, 119(5): 1600–1621.

    Article  Google Scholar 

  • Mori Y. and Nonaka M. (2001). LRFD for assessment of deteriorating existing structures. Structural Safety, 23: 297–313.

    Article  Google Scholar 

  • Murley K. (2000). Surveillance and safety of dams. Dam Technology in Australia 1850–1999 (Editor: B. Cole), 209–225.

    Google Scholar 

  • Murti V. and Valliappan S. (1986). The use of quarter point element in dynamic crack analysis. Eng. Fracture Mech., 23: 585–614.

    Article  Google Scholar 

  • Naus D. J. (1986). Concrete component ageing and its significance relative to life extension of nuclear power plant. Report No. NUREG/CR-4652. Oak Ridge National Laboratory.

    Google Scholar 

  • Naus D. J., Oland C. B., Ellingwood B. R., Hookham C. J. and Graves H. L.(1999). Summary and conclusions of a program addressing ageing of nuclear power plant concrete structures. Nuclear Eng. Design, 194: 73–96.

    Article  Google Scholar 

  • Plizzari G. A. (1998). On the influence of uplift pressure in concrete gravity dams. Eng. Fracture Mech., 59(3): 253–267.

    Article  Google Scholar 

  • Sen S. C. and Venkatesha C. R. (1991). Concrete and masonry dams. Proc. 1st Conf. Research Needs in Dam Safety, New Delhi, India, Vol. 1, III1–7.

    Google Scholar 

  • Tango C. E. S. and Andriolo F. R. (2003). Applying an age function to data from dam jobs — Simulation of concrete strength prediction. Proc. 21 st ICOLD Congress on Large Dams, Q 82, R 81, Montreal, Canada.

    Google Scholar 

  • Tekie P. B. and Ellingwood B. R. (2003). Seismic fragility assessment of concrete gravity dams. Earth Eng. Struc. Dyn., 32(14): 2221–2240.

    Article  Google Scholar 

  • Valliappan S. and Ang K. K. (1985). Dynamic analysis applied to rock mechanics problems. 5th Int. Conf. on Numerical Methods in Geomechanics, Nagoya: 119–132.

    Google Scholar 

  • Valliappan S., Murti V. and Zhang W. (1990). Finite element analysis of anisotropic damage mechanics problems. Eng. Fracture Mech., 35(6): 1061–1071.

    Article  Google Scholar 

  • Valliappan S. and Pham T. (1995). Fuzzy logic applied to numerical modelling of engineering problems. Computational Mechanics Advances, 2(3): 213–281.

    MATH  MathSciNet  Google Scholar 

  • Valliappan S., Yazdchi M. and Khalili N. (1996). Earthquake analysis of gravity dams based on damage mechanics concept. Int. J. Num. Analyt. Meth. Geomech., 20(10): 725–752.

    Article  Google Scholar 

  • Valliappan S. and Yazdchi M. (1999). Seismic response of concrete gravity dams — A continuum damage mechanics approach. Discretization Meth. Struc. Mech. (Editors: H. A. Mang and F. G. Rammerstorfer). Kluwer Academic Publishers: 123–130.

    Google Scholar 

  • Valliappan S., Yazdchi M and Khalili N. (1999). Seismic analysis of arch dams — A continuum damage mechanics approach. Int. J. Num. Meth. Eng., 45(11): 1695–1724.

    Article  MATH  Google Scholar 

  • Vesikari E. (1988). Service life of concrete structures with regard to corrosion of reinforcement. Finland: Research Reports, Espoo.

    Google Scholar 

  • Vu K. A. T. and Stewart M. G. (2000). Structural reliability of concrete bridge including improved chloride-induced corrosion models. Structural Safety, 22(4): 313–333.

    Article  Google Scholar 

  • Yazdchi M., Khalili N., and Valliappan S. (1999). Nonlinear seismic behavior of concrete gravity dams using coupled finite element-boundary element technique. Int. J. Num. Meth. Eng., 44(1): 101–130.

    Article  MATH  Google Scholar 

  • Westergaard H. M. (1931). Water pressures on dams during earthquakes. Transactions of ASCE, 98: 418–433.

    Google Scholar 

  • Zadeh L. A. (1965). Fuzzy Sets. Information and Control, 8(3): 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang W. and Valliappan S. (1998). Continuum damage mechanics theory and application, part I-theory. Int. J. Damage Mech., 7: 250–273.

    Article  Google Scholar 

  • Zhang Y. and Ma L. (1991). Relation between the ageing of concrete dams and the ambient temperature. Proc. 17 th ICOLD Congress on Large Dams, Q 65, R 15, Vienne, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valliappan, S., Chee, C. (2009). Ageing Degradation of Concrete Dams Based on Damage Mechanics Concepts. In: Yuan, Y., Cui, J., Mang, H.A. (eds) Computational Structural Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2822-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2822-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2821-1

  • Online ISBN: 978-90-481-2822-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics