Skip to main content

Olive and Grapevine Biodiversity in Greece and Cyprus – A Review

  • Chapter
  • First Online:
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 2))

Abstract

Olive (Olea europaea) and grape (Vitis vinifera) are among the most important fruit crops. Greece and Cyprus are primeval centers of their early domestication and hence diversification. Despite long selection towards desirable agronomic traits and extensive exchange of selected clones between different regions, both species are still characterized by high levels of genetic and phenotypic variability. Numerous ancient or rare varieties with important agronomic characteristics are still cultivated locally, yet their recent extensive replacement by improved or modern cultivars along with the near extinction of their wild relatives raise concerns about severe genetic erosion. Under the light of the impending climate changes, like global warming and its possible consequences in water availability and expansion of pests/diseases, the need to describe and preserve both cultivated and wild germplasm for future exploitation is imperative now, more than ever. To this end, it is essential to acquire a thorough picture of the existing biodiversity for both species and to understand the molecular mechanisms governing important agronomic traits. More than 170 olive and about 700 grape Greek varieties have been recorded, although the numbers of distinct cultivars may be smaller due to the existence of synonyms. The respective diversity in Cyprus is much lower, though the major Cypriot olive variety ‘Ladolia’ is actually a highly variable mixture of numerous genetically distinct landraces, and the autochthonous grape cultivars are generally well-adapted to extreme environmental conditions constituting promising plant material for sustainable utilization. Molecular marker techniques have significantly ameliorated the description of local genetic diversity within both species. However, most studies have been restricted to major cultivars and accessions obtained from germplasm collections. Further exploration, description and agronomic evaluation of indigenous germplasm are needed, including minor or underutilized domestic varieties and wild germplasm. Groves or individuals of oleasters and sylvestris grapes should be recorded and preserved in situ or ex situ, i.e., in germplasm collections. Such germplasm may constitute invaluable plant material in breeding programs aiming to develop disease-resistant and stress-tolerant clones, thus improving the sustainability of grape and olive growing worldwide. Genetic resources are the foundation of our agricultural future. Sustainable management of olive and grape genetic resources is essential for breeding programs and one of the prerequisites for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam-Blondon A.F., Roux C., Claux D., Butterlin G., Merdinoğlu D., This P. (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor. Appl. Genet. 109, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  • Alleweldt G. (1988) The genetic resources of Vitis. Genetic and geographic origin of grape cultivars, their prime names and synonyms, 2nd Edn. Federal Research Center for Grape Breeding, Geilweilerhof, Germany.

    Google Scholar 

  • Alleweldt G., Possingham J.V. (1988) Progress in grapevine breeding. Theor. Appl. Genet. 75, 669–673.

    Article  Google Scholar 

  • Angiolillo A., Mencuccini M., Baldoni L. (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 98, 411–421.

    Article  CAS  Google Scholar 

  • Anonymous (1995) Food and Agriculture Organization of the United Nations (FAO), Progress report on the global system for the conservation and utilization of plant genetic resources for food and agriculture, Report for the Sixth Session of the Commission on Plant Genetic Resources, CPGR-6/95/4, Rome, Italy.

    Google Scholar 

  • Aradhya M.K., Dangl G.S., Prins B.H., Boursiquot J.M., Walker M.A, Meredith C.P., Simon C.J. (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet. Res. 81, 179–192.

    Article  CAS  Google Scholar 

  • Arroyo-García R., Ruiz-García L., Bolling L., Ocete R., López M.A., Arnold C., Ergul A., Söylemezoğlu G., Uzun H.I., Cabello F., Ibáñez J., Aradhya M.K., Atanassov A., Atanassov I., Balint S., Cenis J.L., Costantini L., Goris-Lavets S., Grando M.S., Klein B.Y., McGovern P.E., Merdinoglu D., Pejic I., Pelsy F., Primikirios N., Risovannaya V., Roubelakis-Angelakis K.A., Snoussi H., Sotiri P., Tamhankar S., This P., Troshin L., Malpica J.M., Lefort F., Martinez-Zapater J.M. (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 15, 3707–3714.

    Article  PubMed  CAS  Google Scholar 

  • Baldoni L., Pellegrini M., Mencuccini A., Angiolillo A., Mulas M. (2000) Genetic relationships among cultivated and wild olives revealed by AFLP markers. Acta Hort. 521, 275–284.

    CAS  Google Scholar 

  • Banilas G., Minas J., Gregoriou C., Demoliou C., Kourti A., Hatzopoulos P. (2003) Genetic diversity among accessions of an ancient olive variety of Cyprus. Genome 46, 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Banilas G., Moressis A., Nikoloudakis N., Hatzopoulos P. (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci. 168, 547–555.

    Article  CAS  Google Scholar 

  • Banilas G., Nikiforiadis A., Makariti I., Moressis A., Hatzopoulos P. (2007) Discrete roles of a microsomal linoleate desaturase gene in olive identified by spatiotemporal transcriptional analysis. Tree Physiol. 27, 481–490.

    PubMed  CAS  Google Scholar 

  • Barranco D., Rallo L. (1984) Las variedades de olivo cultivadas en Andalucía. Ministerio de Agricultura y Junta de Andalucía, Madrid, España.

    Google Scholar 

  • Barranco D., Trujillo I., Rallo L. (2005) Elaiografía Hispanica. In: Rallo L., Barranco D., Caballero J.M., Del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de olivo en España, Libro I, Junta de Andalucía, MAPA y Ediciones Mundi-Prensa.

    Google Scholar 

  • Bartolini G., Messeri C., Prevost G. (1993) Olive tree germplasm: Descriptor list of cultivated varieties in the world. Acta Hort. 356, 116–118.

    Google Scholar 

  • Bartolini G., Prevost G., Messeri C., Carignani G., Menini U.G. (1998) Olive Germplasm. Cultivars and World-Wide collections, FAO, Rome, Italy.

    Google Scholar 

  • Belaj A., Muñoz-Diez C., Baldoni L., Porceddu A., Barranco D., Satovic Z. (2007) Genetic diversity and population structure of wild olives from the North-Western Mediterranean assessed by SSR markers. Ann. Bot. (Lond.) 100, 449–458.

    Article  CAS  Google Scholar 

  • Belaj A., Satovic Z., Cipriani G., Baldoni L., Testolin R., Rallo L., Trujillo I. (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 107, 736–744.

    Article  PubMed  CAS  Google Scholar 

  • Besnard G., Baradat P.H., Breton C., Khadari B., Bervillé A. (2001a) Olive domestication from structure of oleasters cultivars using nuclear RAPDs and mitochondrial RFLPs. Genet. Sel. Evol. 33, 251–268.

    Google Scholar 

  • Besnard G., Baradat P., Chevalier D., Tagmount A., Bervillé A. (2001b) Genetic differentiation in the olive complex (Olea europaea L.) revealed by RAPDs and RFLPs in the rRNA gene. Genet. Resour. Crop. Evol. 48, 165–182.

    Article  Google Scholar 

  • Besnard G., Khadari B., Baradat P., Bervillé A. (2002a) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor. Appl. Genet. 104, 1353–1361.

    Article  PubMed  CAS  Google Scholar 

  • Besnard G., Khadari B., Baradat P, Bervillé A. (2002b) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive (Olea europaea L.) complex. Theor. Appl. Genet. 105, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Booth N., Davies G. (1995) Introduction to Olive Growing in South Australia. Primary Industries and Resources South Australia and Olives South Australia, Adelaide, Australia.

    Google Scholar 

  • Bowers J.E., Meredith C.P. (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat. Genet. 16, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Breton C., Tersac M., Bervillé A. (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J. Biogeogr. 33, 1916–1928.

    Article  Google Scholar 

  • Bronzini de Caraffa V., Maury J., Gambotti C., Breton C., Bervillé A., Giannettini J. (2002) Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from Western and Eastern Mediterranean. Theor. Appl. Genet. 104, 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  • Cervera M.T., Cabezas J.A., Sancha J.C., Martinez de Toda F., Martinez-Zapater J.M. (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 97, 51–59.

    Article  CAS  Google Scholar 

  • Christodoulou G. (1999) The Cyprus Olive Marketing Board: Its role. Olivae 76, 14–15.

    Google Scholar 

  • Cipriani G., Marrazzo M.T., Marconi R., Cimato A., Testolin, R. (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor. Appl. Genet. 104, 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Connell J.H. (1994) History and scope for the olive industry. In: Ferguson L., Sibbett G.S., Martin G.C. (Eds.), Olive Production Manual, Publication No. 3353, Oakland, CA, USA, University of California, Division of Agriculture and National Resources, pp. 1–9.

    Google Scholar 

  • Davidis, U.X. (1967) An Introduction to Ampelography (in Greek with English Abstract). College of Agriculture, Athens, Greece.

    Google Scholar 

  • Davidis U.X. (1982) Greek Ampelology, Band 3, Elements of Ampelography (in Greek with English Abstract), Second Edition. College of Agriculture, Athens, Greece.

    Google Scholar 

  • Dirzo R., Raven P.H. (2003) Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167.

    Article  Google Scholar 

  • Doazan J.-P., Rives M. (1967) Sur le determinisme génétique de sexe dans le genre Vitis. Ann. Amélior. Plantes 17, 105–111.

    Google Scholar 

  • Doligez A., Bouquet A., Danglot Y., Lahogue F., Riaz S., Meredith C.P., Edwards K.J., This P. (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 105, 780–795.

    Article  PubMed  CAS  Google Scholar 

  • Doveri S., Baldoni L. (2007) Olive, in: Kole C. (Ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 4, Fruits and Nuts, Springer-Verlag, Berlin, Heidelberg, pp. 253–264.

    Google Scholar 

  • Duchêne E., Schneider C. (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron. Sustain. Dev. 25, 93–99.

    Article  Google Scholar 

  • Fabbri A., Hormaza J.I., Polito V.S. (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J. Amer. Soc. Hort. Sci. 120, 538–542.

    CAS  Google Scholar 

  • Fabiani R., De Bartolomeo A., Rosignoli P., Servili M., Montedoro G.F., Morozzi G. (2002) Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur. J. Cancer Prevention 11, 351–358.

    Article  CAS  Google Scholar 

  • Galet, P. (1993) The Vines of Cyprus, Vines and Wines of Cyprus, 4000 Years of Tradition. Vine Products Commission, Limassol, Cyprus, pp. 60–73.

    Google Scholar 

  • Galili E., Weinstein-Evron M., Zohary D. (1989) Appearance of olives in submerged Neolithic sites along the Carmel coast. Mitekufat Haeven: J. Israel Prehistoric Soc. 22, 95–97.

    Google Scholar 

  • Gemas V.J., Rijo-Johansen M.J., Tenreiro R., Fevreiro P. (2000) Inter- and intra-varietal analysis of three Olea europeaea L. cultivars using the RAPD technique. J Hortic. Sci. Biotech. 75, 312–319.

    CAS  Google Scholar 

  • Giannoulia K., Banilas G., Hatzopoulos P. (2007) Oleosin gene expression in olive. J. Plant Physiol. 164, 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Grassi F., Labra M., Imazio S., Spada A., Sgorbati S., Scienza A., Sala F. (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107, 1315–1320.

    Article  PubMed  CAS  Google Scholar 

  • Green P.S. (2002) A revision of Olea L. Kew Bull. 57, 91–140.

    Article  Google Scholar 

  • Greene J.A. (1996) The beginnings of grape cultivation and wine production in Phoenician/Punic north Africa. In: McGovern P.E., Fleming S.J., Katz S.H. (Eds.), Origins and Ancient History of Wine Food and Nutrition in History and Anthropology Series, Vol. 11, Gordon and Breach Publishers, Overseas Publishers Association, Amsterdam, The Netherlands, pp. 311–337.

    Google Scholar 

  • Gregoriou C. (1996) Assessment of variation of landraces of olive tree in Cyprus. Euphytica 87, 173–176.

    Article  Google Scholar 

  • Gregoriou C. (1999) Clonal selection of ‘Local’ olive variety of Cyprus. Olivae 76, 26–30.

    Google Scholar 

  • Hammond P.M. (1995) Magnitude and distribution of biodiversity. In: Heywood V.T., Watson R.T. (Eds.), Global Biodiversity Assessment, Cambridge University Press, Cambridge, UK, pp. 113–138.

    Google Scholar 

  • Hatzopoulos P., Banilas G., Giannoulia K., Gazis F., Nikoloudakis N., Milioni D., Haralampidis K. (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur. J. Lipid Sci. Technol. 104, 574–586.

    Article  CAS  Google Scholar 

  • Herdt R.W. (2006) Biotechnology in agriculture. Annu. Rev. Environ. Resour. 31, 265–295.

    Article  Google Scholar 

  • Hopf M. (1991) South and Southwest Europe, In: Van Zeist W., Wasylikowa K., Behre K.E. (Eds.), Progress in Old Word Palaeoethnobotany, Rotterdam-Brookfield, Balkema, pp. 241–277.

    Google Scholar 

  • Hvarleva T., Rusanov K., Lefort F., Tsvetkov I., Atanassov A., Atanassov I. (2005) Genotyping Vitis vinifera L. cultivars of Cyprus by microsatellite analysis. Vitis 44, 93–97.

    CAS  Google Scholar 

  • Jaillon O., Aury J.M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilva C., Horner D., Mica E., Jublot D., Poulain J., Bruyère C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vico V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S., Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delledonne M., Pezzotti M., Lecharny A., Scarpelli C., Artiguenave F., Pè M.E., Valle G., Morgante M., Caboche M., Adam-Blondon A.F., Weissenbach J., Quétier F., Wincker P. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Katsiotis A., Hagidimitriou M., Douka A., Hatzopoulos P. (1998) Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome 41, 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Kotinis C. (1985) Ampelographic Atlas of Greece (in Greek with French summary). Athens, Greece.

    Google Scholar 

  • Krimbas V. (1943) Greek Ampelography. Vol. 1 (in Greek). Ministry of Agriculture, Athens, Greece.

    Google Scholar 

  • Lamboy W.F., Alpha C. (1998) The utility of simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J. Amer. Soc. Hort. Sci. 123, 182–188.

    CAS  Google Scholar 

  • Lefort F., Roubelakis-Angelakis K.A. (2000) The Greek Vitis Database, a multimedia web-backed genetic database for germplasm management of Vitis resources in Greece. J. Wine Res. 11, 233–242.

    Article  Google Scholar 

  • Lefort F., Roubelakis-Angelakis K.A. (2001) Genetic comparison of Greek cultivars of Vitis vinifera L. by nuclear microsatellite profiling. Am. J. Enol. Vitic. 52, 101–108.

    Google Scholar 

  • Levadoux L. (1956) Les populations sauvages de Vitis vinifera L. Ann. Amelior. Plantes, 6, 59–118.

    Google Scholar 

  • Liphschitz N., Gophna R., Hartman M., Biger G. (1991) The beginning of olive (Olea europaea) cultivation in the Old World: A reassessment. J. Arch. Sci. 18, 441–453.

    Article  Google Scholar 

  • Logothetis B. (1947) Contribution à l’Ampélographie Hellénique, Diplôme d’honneur de l’office International du Vin, Athènes, Grèce.

    Google Scholar 

  • Logothetis B. (1970) The development of the vine and of viticulture in Greece based on archaeological findings in the area (in Greek with English summary), Epistimoniki Epetiris tis Geoponikis kai Dasologikis Sholis, University of Thessaloniki, 13, 167–249.

    Google Scholar 

  • Logothetis B. (1974) The contribution of the vine and the wine to the civilization of Greece and eastern Mediterranean (in Greek with French summary), Epistimoniki Epetiris tis Geoponikis kai Dasologikis Sholis, University of Thessaloniki, 17, 5–286.

    Google Scholar 

  • Lumaret R., Ouazzani N. (2001) Ancient wild olives in Mediterranean forests. Nature 413, 700.

    Article  PubMed  CAS  Google Scholar 

  • Lumaret R., Ouazzani N., Michaud H., Vivier G., Deguilloux M.F., Di Giusto F. (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. Heredity 92, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Louime C., Vasanthaiah H.K.N., Lu J., Basha S.M., UcKelmann H. (2007) Future prospects of the grape industry. Curr. Sci. 93, 1210–1211.

    Google Scholar 

  • Lychnos N.D. (1949) Olive tree and its cultivation (in Greek) Vol. 2. Pyrshos Publishers, Athens, Greece.

    Google Scholar 

  • McGovern P.E. (2003) Ancient Wine: The Search for the Origins of Viniculture. Princeton University Press, Princeton.

    Google Scholar 

  • Mekuria G.T., Collins G.G., Sedgley M. (1999) Genetic variability between different accessions of some common commercial olive cultivars. J. Hort. Sci. Biotech. 74, 309–314.

    Google Scholar 

  • Mullins M.G., Bouquet A., Williams L.E. (1992) Biology of the Grapevine. Cambridge University Press, Cambridge.

    Google Scholar 

  • Neef R. (1990) Introduction, development and environmental implications of olive culture: the evidence from Jordan. In: Bottema S., Entjes-Nieborg G., van Zeist W. (Eds.), Man’s Role in the Shaping of the Eastern Mediterranean Landscape, A.A. Balkema/Rotterdam/Brookfield, pp. 295–306.

    Google Scholar 

  • Negrul A.M. (1938) Evolucija kuljturnyx form vinograda. Doklady Akademii nauk SSSR, 8, 585–585.

    Google Scholar 

  • Nikoloudakis N., Banilas G., Gazis F., Metzidakis, N., Hatzopoulos P. (2003) Discrimination and genetic diversity among cultivated olives of Greece using RAPD markers. J. Amer. Soc. Hort. Sci. 128, 741–746.

    CAS  Google Scholar 

  • Olmo H.P. (1976) Grapes: Vitis, Muscadinia (Vitaceae). In: Simmonds N.W. (Ed.), Evolution of Crop Plants, Longman, New York, pp. 294–298.

    Google Scholar 

  • Ouazzani N., Lumaret R., Villemur P., Di Giusto, F. (1993) Leaf allozyme variation in cultivated and wild olive trees (Olea europaea L.). J. Hered. 84, 34–42.

    CAS  Google Scholar 

  • Owen C.A., Bita E.C., Banilas G., Hajjar S.E., Sellianakis V., Aksoy U., Hepaksoy S., Chamoun R., Talhook S.N., Metzidakis I., Hatzopoulos P., Kalaitzis P. (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor. Appl. Genet. 110, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Owen R.W., Mier W., Giacosa A., Hull W.E., Spiegelhalder B., Bartsch H. (2000) Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem. Toxicol. 38, 647–659.

    Article  PubMed  CAS  Google Scholar 

  • Pignatti S. (1976) A system for coding plant species for data processing in phytosociology. Vegetatio 33, 23–32.

    Article  Google Scholar 

  • Rallo L., Barranco D. (1983) Autochthonous olive cultivars in Andalusia. Acta Hort. (ISHS) 140, 169–179.

    Google Scholar 

  • Renfrew J.M. (1996) Palaeoethnobotanical finds of Vitis from Greece. In: McGovern P.E., Fleming S.J., Katz S.H. (Eds.), Origins and Ancient History of Wine Food and Nutrition in History and Anthropology Series, Vol. 11, Gordon and Breach Publishers, Overseas Publishers Association, Amsterdam, The Netherlands, pp. 255–267.

    Google Scholar 

  • Rhizopoulou S. (2004) Symbolic plants of the Olympic Games. J. Exp. Bot. 55, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  • Rhizopoulou S. (2007) Olea europaea L. A botanical contribution to culture. American-Eurasian J. Agric. & Environ. Sci. 2, 382–387.

    Google Scholar 

  • Riaz S., Dangl G.S., Edwards K.J., Meredith C.P. (2004) A microsatellite based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 108, 864–872.

    Article  CAS  Google Scholar 

  • Riaz A., Doligez R., Henry J., Walker M.A. (2007) Grape. In: Kole C. (Ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 4, Fruits and Nuts, Springer-Verlag, Berlin, Heidelberg, pp. 63–101.

    Google Scholar 

  • Roumbas, N. (1993) The Vines of Cyprus, Vines and Wines of Cyprus, 4000 Years of Tradition, Vine Products Commission, Limassol, Cyprus, pp. 47–61.

    Google Scholar 

  • Salviat F. (1990) Vignes et vins anciens de Maronée à Mendé. In: Koukouli, C., Picard O. (Eds.), Recherches franko-helleniques (I), Mneme D. Lazarides, Athenai, pp. 457–476.

    Google Scholar 

  • Savvides S. (2003) Viticulture and clonal selection in Cyprus, Abstracts of first meeting of the ECP/GR working group on Vitis, 12–14 June, Palič, Serbia and Montenegro.

    Google Scholar 

  • Sefc K.M., Lopes M.S., Lefort F., Botta R., Roubelakis-Angelakis K.A., Ibanez J., Pejic I., Wagner H.W., Glössl J., Steinkellner H. (2000) Microsatellites variability in grapevine cultivars from different European regions and evolution of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100, 498–505.

    Article  Google Scholar 

  • Sefc K.M., Steinkellner H., Glössl J., Kampfer S., Regner F. (1998) Reconstruction of a grapevine pedigree by microsatellite analysis. Theor. Appl. Genet. 97, 227–231.

    Article  Google Scholar 

  • Singh S.P. (2001) Broadening the genetic base of common bean cultivars: A Review. Crop Sci. 41, 1659–1675.

    Article  Google Scholar 

  • Stavrakakis M.N. (1982) Identification of grape cultivars (Vitis vinifera L.) by pollen isozyme polymorphisms (in Greek with English Abstract), Ph.D. Thesis, Agric. Univ. of Athens, Athens.

    Google Scholar 

  • Stavrakakis M.N., Biniari K. (1998) Genetic study of grape cultivars belonging to the muscat family by random amplified polymorphic DNA markers. Vitis 37, 119–122.

    Google Scholar 

  • Stavrakakis M.N., Biniari K., Hatzopoulos P. (1997) Identification and discrimination of eight Greek grape cultivars (Vitis vinifera L.) by random amplified polymorphic DNA markers. Vitis 36, 175–178.

    Google Scholar 

  • Terral J.-F., Alonso N., Capdevila R.B., Chatti N., Fabre L., Fiorentino G., Marinval P., Jorda G.P., Pradat B., Rovira N., Alibert P. (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biogeogr. 31, 63–77.

    Google Scholar 

  • Terral J.-F., Arnold-Simard G. (1996) Beginnings of olive cultivation in eastern Spain in relation to Holocene bioclimatic changes. Quaternary Res. 46, 176–185.

    Article  Google Scholar 

  • This P., Jung A., Boccacci P., Borrego J., Botta R., Costantini L., Crespan M., Dangl G.S., Eisenheld C., Ferreira-Monteiro F., Grando S., Ibáñez J., Lacombe T., Laucou V., Magalhães R., Meredith C.P., Milani N., Peterlunger E., Regner F., Zulini L., Maul E. (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458.

    Article  PubMed  CAS  Google Scholar 

  • This P., Lacombe T., Thomas M.R. (2006) Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519.

    Article  PubMed  CAS  Google Scholar 

  • Thrupp L. (2000) Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. Inter. Affairs 76, 283–297.

    Article  Google Scholar 

  • Trujillo I., Arús P., Rallo L. (1995) Identifying olive cultivars by isozymes analysis. J. Amer. Soc. Hort. Sci. 120, 318–324.

    CAS  Google Scholar 

  • Velasco R., Zharkikh A., Troggio M., Cartwright D.A., Cestaro A., Pruss D., Pindo M., Fitzgerald L.M., Vezzulli S., Reid J., Malacarne G., Iliev D., Coppola G., Wardell B., Micheletti D., Macalma T., Facci M., Mitchell J.T., Perazzolli M., Eldredge G., Gatto P., Oyzerski R., Moretto M., Gutin N., Stefanini M., Chen Y., Segala C., Davenport C., Demattè L., Mraz A., Battilana J., Stormo K., Costa F., Tao Q., Si-Ammour A., Harkins T., Lackey A., Perbost C., Taillon B., Stella A., Solovyev V., Fawcett J.A., Sterck L., Vandepoele K., Grando S.M., Toppo S., Moser C., Lanchbury J., Bogden R., Skolnick M., Sgaramella V., Bhatnagar S.K., Fontana P., Gutin A., Van de Peer Y., Salamini F., Viola R. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12): e1326.

    Article  PubMed  CAS  Google Scholar 

  • Vergari G., Patumi M., Fontanazza G. (1996) Use of RAPD markers in the characterisation of olive germplasm. Olivae 60, 19–22.

    Google Scholar 

  • Vivier M.A., Pretorius, I.S. (2000). Genetic improvement of grapevine: tailoring grape varieties for the third millennium. S. Afr. J. Enol. Vitic. 21, 5–26.

    CAS  Google Scholar 

  • White M.A., Diffenbaugh N.S., Jones G.V., Pal J.S., Giorgi F. (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 103, 11217–11222.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M.S. (1985) The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273.

    Article  Google Scholar 

  • Zohary D. (1996) The domestication of the grapevine Vitis vinifera L. in the Near East. In: McGovern P.E., Fleming S.J., Katz S.H. (Eds.), Origins and Ancient History of Wine Food and Nutrition in History and Anthropology Series, Vol. 11, Gordon and Breach Publishers, Overseas Publishers Association, Amsterdam, The Netherlands, pp. 23–30.

    Google Scholar 

  • Zohary M. (1973) Geobotanical foundation of the Middle East, Gustav Fischer Verlag, Stuttgart, 739 pp.

    Google Scholar 

  • Zohary D., Hopf M. (1993) Domestication of Plants in the Old World, Oxford University Press, Oxford.

    Google Scholar 

  • Zohary D., Hopf M. (1994) Olive: Olea europaea. Domestication of plants in the Old World, Clarendon Press, Oxford, pp. 137–143.

    Google Scholar 

  • Zohary D., Hopf M. (2000) Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, 3rd Edn., Oxford University, New York.

    Google Scholar 

  • Zohary D., Spiegel-Roy P. (1975) Beginnings of fruit growing in the Old World. Science 187, 319–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Panayiotis Fotinopoulos for generous gift of photos shown in Figs. 1 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Banilas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Banilas, G., Korkas, E., Kaldis, P., Hatzopoulos, P. (2009). Olive and Grapevine Biodiversity in Greece and Cyprus – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_14

Download citation

Publish with us

Policies and ethics